Nested Tetrahedrons and Spheres 2.

Geometry Level 5

For each positive integer n n ,

Let V T ( n ) V_{T}(n) be the volume of the regular tetrahedron inscribed in a sphere of volume V s ( n ) V_{s}(n)

and

Let V s ( n + 1 ) V_{s}(n + 1) be the volume of the sphere inscribed in the regular tetrahedron of volume V T ( n ) V_{T}(n) which is tangent to the faces of the regular tetrahedron. .

Let V s = n = 1 V s ( n ) V_{s} = \sum_{n = 1}^{\infty} V_{s}(n) and V T = n = 1 V T ( n ) V_{T} = \sum_{n = 1}^{\infty} V_{T}(n) .

If V s V T V s ( 1 ) 2 = a 4 a b c 2 π \dfrac{V_{s} * V_{T}}{V_{s}(1)^2} = \dfrac{a^4\sqrt{a}}{b* c^2\pi} , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 21, 2019

V s ( 1 ) = 4 3 π R 1 3 V_{s}(1) = \dfrac{4}{3}\pi R_{1}^3 and V T ( 1 ) = a 1 3 6 2 V_{T}(1) = \dfrac{a_{1}^3}{6\sqrt{2}}

R 1 2 = 2 3 a 1 2 2 2 3 a 1 R 1 + R 1 2 + a 1 2 3 a 1 2 2 2 3 a 1 R 1 = 0 a 1 ( a 1 2 2 3 R 1 ) = 0 R_{1}^2 = \dfrac{2}{3}a_{1}^2 - 2\sqrt{\dfrac{2}{3}}a_{1}R_{1} + R_{1}^2 + \dfrac{a_{1}^2}{3} \implies a_{1}^2 - 2\sqrt{\dfrac{2}{3}}a_{1}R_{1} =0 \implies a_{1}(a_{1} - 2\sqrt{\dfrac{2}{3}}R_{1}) = 0

a 1 0 a 1 = 2 2 3 R 1 a_{1} \neq 0 \implies a_{1} = 2\sqrt{\dfrac{2}{3}}R_{1}

V 1 ( T ) = 8 9 3 R 1 3 = 4 3 π R 3 ( 2 3 3 π ) = 2 3 3 π V 1 ( s ) \implies V_{1}(T) = \dfrac{8}{9\sqrt{3}}R_{1}^3 = \dfrac{4}{3}\pi R^3(\dfrac{2}{3\sqrt{3}\pi}) = \dfrac{2}{3\sqrt{3}\pi}V_{1}(s)

a 1 2 3 + R 2 2 = 2 3 a 1 2 2 2 3 a 1 R 2 + R 2 2 a 1 2 3 2 2 3 a 1 R 2 = 0 a 1 ( a 1 3 2 2 3 R 2 ) = 0 \dfrac{a_{1}^2}{3} + R_{2}^2 = \dfrac{2}{3}a_{1}^2 - 2\sqrt{\dfrac{2}{3}}a_{1}R_{2} + R_{2}^2 \implies \dfrac{a_{1}^2}{3} - 2\sqrt{\dfrac{2}{3}}a_{1}R_{2} = 0 \implies a_{1}(\dfrac{a_{1}}{3} - 2\sqrt{\dfrac{2}{3}}R_{2}) = 0

a 1 0 R 2 = 3 6 2 a 1 = a_{1} \neq 0 \implies R_{2} = \dfrac{\sqrt{3}}{6\sqrt{2}}a_{1} = 3 6 2 ( 2 2 3 ) R 1 \dfrac{\sqrt{3}}{6\sqrt{2}}(2\sqrt{\dfrac{2}{3}})R_{1} = R 1 3 \dfrac{R_{1}}{3}

V s ( 2 ) = 4 π 3 ( R 1 3 ) 3 = 1 27 V s ( 1 ) \implies V_{s}(2) = \dfrac{4\pi}{3}(\dfrac{R_{1}}{3})^3 = \dfrac{1}{27}V_{s}(1)

a 1 = 2 2 3 R 1 , R 2 = R 1 3 \therefore a_{1} = 2\sqrt{\dfrac{2}{3}}R_{1}, R_{2} = \dfrac{R_{1}}{3} and a 2 = 2 2 3 R 2 = 2 2 3 R 1 3 , R 3 = R 2 3 = R 1 3 2 , a_{2} = 2\sqrt{\dfrac{2}{3}}R_{2} = 2\sqrt{\dfrac{2}{3}}\dfrac{R_{1}}{3}, R_{3} = \dfrac{R_{2}}{3} = \dfrac{R_{1}}{3^2}, a 3 = 2 2 3 R 3 = 2 2 3 R 1 3 2 a_{3} = 2\sqrt{\dfrac{2}{3}}R_{3} = 2\sqrt{\dfrac{2}{3}}\dfrac{R_{1}}{3^2}

In General:

R n = ( 1 3 ) n 1 R 1 R_{n} = (\dfrac{1}{3})^{n - 1}R_{1} and a n = 2 2 3 ( 1 3 ) n 1 R 1 a_{n} = 2\sqrt{\dfrac{2}{3}}(\dfrac{1}{3})^{n - 1}R_{1}

V s ( n ) = ( 1 27 ) n 1 V s ( 1 ) \implies V_{s}(n) = (\dfrac{1}{27})^{n - 1}V_{s}(1) and V T ( n ) = 2 3 3 π ( 1 27 ) n 1 V s ( 1 ) V_{T}(n) = \dfrac{2}{3\sqrt{3}\pi}(\dfrac{1}{27})^{n - 1}V_{s}(1)

and,

V s = n = 1 V s ( n ) = V s ( 1 ) n = 1 ( 1 27 ) n 1 = 27 26 V s ( 1 ) V_{s} = \sum_{n = 1}^{\infty} V_{s}(n) = V_{s}(1)\sum_{n = 1}^{\infty} (\dfrac{1}{27})^{n - 1} = \dfrac{27}{26}V_{s}(1)

and

V T = n = 1 V T ( n ) = 2 3 3 π V s ( 1 ) n = 1 ( 1 27 ) n 1 = 2 3 3 π ( 27 26 ) V s ( 1 ) = 9 13 3 π V s ( 1 ) V_{T} = \sum_{n = 1}^{\infty} V_{T}(n) = \dfrac{2}{3\sqrt{3}\pi}V_{s}(1)\sum_{n = 1}^{\infty} (\dfrac{1}{27})^{n - 1} = \dfrac{2}{3\sqrt{3}\pi}(\dfrac{27}{26})V_{s}(1) = \dfrac{9}{13\sqrt{3}\pi}V_{s}(1)

V s V T V s ( 1 ) 2 = 3 4 3 2 1 3 2 π = a 4 a b c 2 π a + b + c = 18 \implies \dfrac{V_{s} * V_{T}}{V_{s}(1)^2} = \dfrac{3^4\sqrt{3}}{2* 13^2\pi} = \dfrac{a^4\sqrt{a}}{b* c^2\pi} \implies a + b + c = \boxed{18} .

Again, V T = n = 1 V T V_{T} = \sum_{n = 1}^{\infty} V_{T} should be V T = n = 1 V T ( n ) V_{T} = \sum_{n = 1}^{\infty} V_T(n) .

Jon Haussmann - 2 years, 4 months ago

Log in to reply

Thanks, I thought that's what I had. Never noticed it.

Rocco Dalto - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...