Nested Trigonometric Integral

Calculus Level 3

3 0 1 sin ( 2 cos 1 ( sin ( cos 1 ( x ) ) ) ) d x = ? \large \displaystyle 3\int _{ 0 }^{ 1 }{ \sin { (2\cos ^{ -1 }{ (\sin { (\cos ^{ -1 }{ (x)))) \, dx } } } } } = \ ?

Clarification : cos 1 ( x ) = arccos ( x ) \cos ^{ -1 }{ (x) } =\arccos { (x) } is the inverse cosine function.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raj Rajput
Aug 11, 2015

3 0 1 s i n ( 2 c o s 1 ( s i n ( c o s 1 ( x ) ) ) ) d x 3\displaystyle \int_{0}^{1} sin(2cos^{-1}(sin(cos^{-1}(x))))dx = 3 0 1 s i n ( 2 c o s 1 ( 1 x 2 ) ) d x =3\displaystyle \int_{0}^{1} sin(2cos^{-1}(\sqrt{1-x^{2}}))dx = 6 0 1 s i n ( c o s 1 ( 1 x 2 ) ) c o s ( c o s 1 ( 1 x 2 ) ) d x =6\displaystyle \int_{0}^{1} sin(cos^{-1}(\sqrt{1-x^{2}}))cos(cos^{-1}(\sqrt{1-x^{2}}))dx = 6 0 1 ( 1 1 + x 2 ) 1 x 2 d x =6\displaystyle \int_{0}^{1}(\sqrt{1-1+x^{2}})\sqrt{1-x^{2}}dx = 6 0 1 x 1 x 2 d x =6\displaystyle \int_{0}^{1}x\sqrt{1-x^{2}}dx Using x 2 = u = > d x = d u 2 x x^{2}=u => dx=\frac{du}{2x} 3 0 1 1 u d u = ( 3 2 3 ( 1 u ) 3 2 ] 0 1 = 2 3\displaystyle \int_{0}^{1}\sqrt{1-u}du=(-3\cdot \frac{2}{3}(1-u)^{\frac{3}{2}}]_{0}^{1}=2

Anthony Muleta
Aug 11, 2015

Let θ = arccos ( x ) \theta=\arccos { (x) }

cos θ = x \Longrightarrow \cos { \theta } =x

Using sin 2 θ + cos 2 θ = 1 \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 ,

sin 2 ( cos 1 ( x ) ) + x 2 = 1 \Longrightarrow \sin ^{ 2 }{ (\cos ^{ -1 }{ (x)) } } +{ x }^{ 2 }=1

sin ( cos 1 ( x ) ) = 1 x 2 \Longrightarrow \sin { (\cos ^{ -1 }{ (x)) } } =\sqrt { 1-{ x }^{ 2 } } .

Hence the integral becomes 3 0 1 sin ( 2 cos 1 ( 1 x 2 ) ) d x 3\int _{ 0 }^{ 1 }{ \sin { (2\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } )) } } } dx .

= 6 0 1 sin ( cos 1 ( 1 x 2 ) ) cos ( cos 1 ( 1 x 2 ) ) d x =6\int _{ 0 }^{ 1 }{ \sin { (\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } )) } } \cos { (\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } )) } } } dx (Double angle formula)

= 6 0 1 sin ( cos 1 ( 1 x 2 ) ) 1 x 2 d x =6\int _{ 0 }^{ 1 }{ \sin { (\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } ))\sqrt { 1-{ x }^{ 2 } } } dx } } .

Now let α = cos 1 ( 1 x 2 ) \alpha =\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } ) }

cos ( α ) = 1 x 2 \Longrightarrow \cos { (\alpha } )=\sqrt { 1-{ x }^{ 2 } }

sin 2 ( α ) + cos 2 ( α ) = 1 \Longrightarrow \sin ^{ 2 }{ (\alpha ) } +\cos ^{ 2 }{ (\alpha ) } =1

sin 2 ( cos 1 ( 1 x 2 ) ) + 1 x 2 = 1 \Longrightarrow \sin ^{ 2 }{ (\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } ) } ) } +1-{ x }^{ 2 }=1

sin ( cos 1 ( 1 x 2 ) ) = x \Longrightarrow \sin { (\cos ^{ -1 }{ (\sqrt { 1-{ x }^{ 2 } } ) } ) } =x .

The integral is now equal to 6 0 1 x 1 x 2 d x 6\int _{ 0 }^{ 1 }{ x\sqrt { 1-{ x }^{ 2 } } dx } which can be easily evaluated by letting u = 1 x 2 u=1-{ x }^{ 2 } :

d u = 2 x d x du=-2xdx .

When x = 0 , u = 1 x=0, u=1 and when x = 1 , u = 0 x=1, u=0 . So finally:

3 1 0 u d u -3\int _{ 1 }^{ 0 }{ \sqrt { u } du }

= 3 0 1 u 1 2 d u =3\int _{ 0 }^{ 1 }{ { u }^{ \frac { 1 }{ 2 } }du }

= [ 2 u 3 2 ] 0 1 = 2 ={ \left[ 2{ u }^{ \frac { 3 }{ 2 } } \right] }_{ 0 }^{ 1 }=\boxed { 2 } .

I did the same way.

Niranjan Khanderia - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...