NESTED!!!

Calculus Level 2

1 + 2 1 + 3 1 + 4 . . . . . . . . = ? \sqrt { 1+2\sqrt { 1+3\sqrt { 1+4\sqrt { ........\infty } } } } =\quad ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x + n + a = a x + ( n + a ) 2 + x a ( x + n ) + ( n + a ) 2 + ( x + n ) a ( x + 2 n ) + ( n + a ) 2 + ( x + 2 n ) \color{#3D99F6}{x+n+a=\sqrt{ax+(n+a)^2+x\sqrt{a(x+n)+(n+a)^2+(x+n)\sqrt{a(x+2n)+(n+a)^2+(x+2n)\sqrt{\dotsm}}}}} The above formula was discovered by Ramanujan.If we let a = 0 , n = 1 \color{#BA33D6}{a=0,n=1} ,after simplifying we get: x + 1 = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) \color{#3D99F6}{x+1=\sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{\dotsm}}}}} Our question fits this form,so letting x = 2 \color{#20A900}{x=2} ,we get: 2 + 1 = 3 = 1 + 2 1 + 3 1 + 4 \color{#3D99F6}{2+1=\boxed{3}=\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{\dotsm}}}}}

Michael Mendrin
Mar 13, 2014

The basic idea is to take advantage of the identity:

(x + k a)² = (a² + (x + (k -1) a) (x + k a + a))

So, starting with k = 1, we have:

(x + a) = √(a² + x(x + a + a)))

which leads to:

(x + a) = √(a² + x√(a² + (x + a)(x + 2a + a))

and so on, so that we have:

(x + a) = √(a² + x√(a² + (x + a)√(a² + (x + 2a)√(a² + (x + 3a)√(a² + ...

Letting x = 2 and a = 1, we have:

2 + 1 = 3 = √( 1 + 2√(1 + 3√(1 + 4√(1 + ...

so there

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...