Nesting Radicals

Algebra Level 3

4 + 2 4 + 2 4 + 2 4 + 2 4 + 3 3 3 3 3 = ? \sqrt[3]{4 + 2\sqrt[3]{4 + 2\sqrt[3]{4 +2\sqrt[3]{4 +2\sqrt[3]{4 + \cdots }}}}} = \, ?

2 2 3 \frac{2}{3} 4 0 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x = 4 + 2 4 + 2 4 + 2 4 + 2 4 + 3 3 3 3 3 \color{#20A900}{x}= \sqrt[3]{4 + 2\color{#20A900}{\sqrt[3]{4 + 2\sqrt[3]{4 +2\sqrt[3]{4 +2\sqrt[3]{4 + \cdots }}}}}}

x = 4 + 2 x 3 \color{#20A900}{x}=\sqrt[3]{4+2\color{#20A900}{x}}

Cubing both sides.

x 3 = 4 + 2 x \color{#20A900}{x}^3=4+2\color{#20A900}{x}

x 3 2 x 4 = 0 \color{#20A900}{x}^3-2\color{#20A900}{x}-4=0

( x 2 ) ( x 2 + 2 x + 2 ) = 0 (\color{#20A900}{x}-2)(\color{#20A900}{x}^2+2\color{#20A900}{x}+2)=0

x = 2 \therefore \color{#20A900}{x}=2

4 + 2 4 + 2 4 + 2 4 + 2 4 + 3 3 3 3 3 = 2 \Rightarrow \sqrt[3]{4 + 2\sqrt[3]{4 + 2\sqrt[3]{4 +2\sqrt[3]{4 +2\sqrt[3]{4 + \cdots }}}}}=\color{#20A900}{2}

Isaac Reid
Jan 29, 2016

x = 4 + 2 x 3 x=\sqrt[3]{4+2x}

x 3 = 4 + 2 x x^{3}=4+2x

x 3 2 x 4 = 0 x^{3}-2x-4=0

( x 2 ) ( x 2 + 2 x + 2 ) = 0 (x-2)(x^{2}+2x+2)=0

x 2 + 2 x + 2 x^{2}+2x+2 has no solutions (as b 2 4 a c = 2 2 4 ( 2 ) = 4 b^{2}-4ac=2^{2}-4(2)=-4 ), so x = 2 x=2 is the only solution.

Note that this is actually an iterative formula, which provides a numerical way of solving an equation. Type in a random number on your calculator, and use the "answer" function to substitute it into 4 + 2 ( a n s ) 3 \sqrt[3]{4+2(ans)} . Then repeatedly press = = , and the value on the calculator display will converge on 2.

Convergence on the calculator is likely due to the rounding

Arulx Z - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...