Never Ending Fraction

Algebra Level 2

Find the positive value of:

2 3 + 5 3 ( 2 3 + 5 3 ( 2 3 + 5 3 ( . . . ) ) ) \large \frac{2}{3} + \frac{5}{3 \left(\frac{2}{3} + \frac{5}{3 \left(\frac{2}{3} + \frac{5}{3(...)}\right)}\right)}

7 2 \frac 72 5 3 \frac 53 3 \sqrt{3} 3 3 1 1 2 \sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 12, 2019

Similar solution with @Daniel Venable 's

Let x x be the value to be found. Then

x = 2 3 + 5 3 ( 2 3 + 5 3 ( 2 3 + 5 3 ( ) ) ) x = 2 3 + 5 3 x Multiply both sides by 3 x 3 x 2 = 2 x + 5 Rearrange 3 x 2 2 x 5 = 0 ( 3 x 5 ) ( x + 1 ) = 0 x = 5 3 Since x > 0 \begin{aligned} x & = \frac 23 + \frac 5{3\left(\frac 23 + \frac 5{3\left(\frac 23 + \frac 5{3(\cdots)} \right)}\right)} \\ x & = \frac 23 + \frac 5{3x} & \small \color{#3D99F6} \text{Multiply both sides by }3x \\ 3x^2 & = 2x + 5 & \small \color{#3D99F6} \text{Rearrange} \\ 3x^2 - 2x - 5 & = 0 \\ (3x-5)(x+1) & = 0 \\ \implies x & = \boxed{\frac 53} & \small \color{#3D99F6} \text{Since }x > 0 \end{aligned}

Daniel Venable
Feb 11, 2019

Set the equation to x x , ( x = 2 3 + 5 3 x ) (x = \frac{2}{3} + \frac{5}{3x})

Multiply by 3 x 3x , ( 3 x 2 = 2 x 5 ) (3x^{2} = 2x - 5)

Use the quadratic formula to get 1 -1 or 5 3 . \frac{5}{3}.

No need to mention "positive value" because the negative value is not a solution.

Chew-Seong Cheong - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...