New Basel Problem Proof

Calculus Level 5

j = 1 2 n 1 1 sin 2 ( π j 2 n + 1 ) = A B C n D E \large \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+1}}\right)}=\frac{A}{B} C^n - \frac{D}{E} Find A + B + C + D + E A+B+C+D+E

Bonus: Use this result to solve the Basel Problem


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

John Ross
May 8, 2018

This sum is equal to 2 3 4 n 2 3 \frac 23 4^n-\frac 23 . We can show this by induction. The base case of n=1 is straightforward. By the double angle identity for sin(x), 2 3 4 n 2 3 = j = 1 2 n 1 1 sin 2 ( π j 2 n + 1 ) = 1 4 j = 1 2 n 1 1 sin 2 ( π j 2 n + 2 ) cos 2 ( π j 2 n + 2 ) \large \frac 23 4^n-\frac 23= \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+1}}\right)}=\frac 14 \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+2}}\right)\cos^2 \left(\frac{\pi j}{2^{n+2}}\right)} We can use the identity 1 = cos 2 x + sin 2 x 1=\cos^2 x +\sin^2 x on the numerator inside the sum to get 1 4 j = 1 2 n 1 1 sin 2 ( π j 2 n + 2 ) + 1 cos 2 ( π j 2 n + 2 ) = 1 4 j = 1 2 n 1 1 sin 2 ( π j 2 n + 2 ) + 1 4 j = 1 2 n 1 1 sin 2 ( 2 n + 1 π π j 2 n + 2 ) = 1 4 ( j = 1 2 n + 1 1 ( 1 sin 2 ( π j 2 n + 2 ) ) 1 sin 2 ( π 4 ) ) \large \frac 14 \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+2}}\right)}+\frac{1}{\cos^2 \left(\frac{\pi j}{2^{n+2}}\right)}=\frac 14 \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+2}}\right)}+\frac 14 \sum_{j=1}^{2^{n}-1} \frac{1}{\sin^2 \left(\frac{2^{n+1} \pi-\pi j}{2^{n+2}}\right)}=\frac 14 \bigg( \sum_{j=1}^{2^{n+1}-1} \bigg( \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+2}}\right)}\bigg) - \frac{1}{\sin^2 \left(\frac{\pi}{4}\right)}\bigg) Rearranging where we started and where we ended up gives us j = 1 2 n + 1 1 1 sin 2 ( π j 2 n + 2 ) = 2 3 4 n + 1 2 3 \large \sum_{j=1}^{2^{n+1}-1} \frac{1}{\sin^2 \left(\frac{\pi j}{2^{n+2}}\right)}=\frac 23 4^{n+1}-\frac 23 which completes the proof.

Bonus: Because 1 sin 2 ( x ) = 1 + 1 tan 2 ( x ) \frac{1}{\sin^2(x)}=1+\frac{1}{\tan^2(x)} , we have j = 1 2 n 1 1 tan 2 ( π j 2 n + 1 ) = 2 3 4 n 2 n + 1 3 \large \sum_{j=1}^{2^{n}-1} \frac{1}{\tan^2 \left(\frac{\pi j}{2^{n+1}}\right)}=\frac 23 4^n-2^n+\frac 13 Also, sin ( x ) x tan ( x ) 1 tan 2 ( x ) 1 x 2 1 sin 2 ( x ) \sin(x) \leq x \leq \tan(x) \implies \frac{1}{\tan^2(x)} \leq \frac{1}{x^2} \leq \frac{1}{\sin^2(x)} for 0 x π 2 0 \leq x \leq \frac{\pi}{2} so 2 3 4 n 2 n + 1 3 j = 1 2 n 1 1 ( π j 2 n + 1 ) 2 2 3 4 n 2 3 2 3 1 2 n + 1 3 4 n j = 1 2 n 1 1 π 2 4 j 2 2 3 2 3 4 n \large \frac 23 4^n-2^n+\frac 13 \leq \sum_{j=1}^{2^{n}-1} \frac{1}{\left(\frac{\pi j}{2^{n+1}}\right)^2} \leq \frac 23 4^n-\frac 23 \implies \frac 23 - \frac{1}{2^n} + \frac{1}{3*4^n} \leq \large \sum_{j=1}^{2^n-1} \frac{1}{\frac{\pi^2}{4} j^2} \leq \frac 23 - \frac{2}{3*4^n} Taking the limit as n goes to infinity gives 2 3 j = 1 1 π 2 4 j 2 2 3 j = 1 1 j 2 = π 2 6 \large \frac 23 \leq \large \sum_{j=1}^{\infty} \frac{1}{\frac{\pi^2}{4} j^2} \leq \frac 23 \implies \sum_{j=1}^{\infty} \frac{1}{j^2}=\frac {\pi^2}{6}

Mark Hennings
May 8, 2018

Note that sin 2 N x = j = 0 N 1 ( 2 N 2 j + 1 ) ( 1 ) j cos 2 N 2 j 1 x sin 2 j + 1 x = sin 2 N 1 x cos x F N ( cot 2 x ) \sin 2Nx \; = \; \sum_{j=0}^{N-1}{2N \choose 2j+1}(-1)^j \cos^{2N-2j-1}x \sin^{2j+1}x \; = \; \sin^{2N-1}x \,\cos x\, F_N(\cot^2x) where F N ( X ) = j = 0 N 1 ( 1 ) j ( 2 N 2 j + 1 ) X N j 1 = ( 2 N 1 ) X N 1 ( 2 N 3 ) X N 2 + F_N(X) \; = \; \sum_{j=0}^{N-1}(-1)^j {2N \choose 2j+1}X^{N-j-1} \; = \; {2N \choose 1}X^{N-1} - {2N \choose 3}X^{N-2} + \cdots It is clear that the roots of F N ( X ) F_N(X) are cot 2 j π 2 N \cot^2\tfrac{j\pi}{2N} for 1 j N 1 1 \le j \le N-1 , and hence we deduce that j = 1 N 1 cot 2 j π 2 N = ( 2 N 1 ) 1 ( 2 N 3 ) = 1 3 ( N 1 ) ( 2 N 1 ) \sum_{j=1}^{N-1} \cot^2 \tfrac{j\pi}{2N} \; = \; {2N \choose 1}^{-1} {2N \choose 3} \; = \; \tfrac13(N-1)(2N-1) and so j = 1 N 1 c o s e c 2 j π 2 N = N 1 + 1 3 ( N 1 ) ( 2 N 1 ) = 2 3 ( N 2 1 ) \sum_{j=1}^{N-1} \mathrm{cosec}^2 \tfrac{j\pi}{2N} \; = \; N-1 + \tfrac13(N-1)(2N-1) \; = \; \tfrac23(N^2-1) Putting N = 2 n N = 2^n gives the sum 2 3 ( 4 n 1 ) \tfrac23(4^n - 1) for this question, making the answer 2 + 3 + 4 + 2 + 3 = 14 2+3+4+2+3 = \boxed{14} .


We can prove the formula for ζ ( 2 ) \zeta(2) without using the 2 n 2^n version of this result. Since sin x < x < tan x \sin x < x < \tan x for 0 < x < 1 2 π 0 < x < \tfrac12\pi , we obtain j = 1 n 1 cot 2 j π 2 n < 4 n 2 π 2 j = 1 n 1 j 2 < j = 1 n 1 c o s e c 2 j π 2 n \sum_{j=1}^{n-1} \cot^2 \tfrac{j\pi}{2n} \; < \; \tfrac{4n^2}{\pi^2} \sum_{j=1}^{n-1} j^{-2} \; < \; \sum_{j=1}^{n-1} \mathrm{cosec}^2 \tfrac{j\pi}{2n} and hence 1 3 ( n 1 ) ( 2 n 1 ) < 4 n 2 π 2 j = 1 n 1 j 2 < 2 3 ( n 2 1 ) \tfrac13(n-1)(2n-1) \; < \; \tfrac{4n^2}{\pi^2}\sum_{j=1}^{n-1} j^{-2} \; < \; \tfrac23(n^2-1) which gives ( n 1 ) ( 2 n 1 ) 12 n 2 π 2 < j = 1 n 1 j 2 < n 2 1 6 n 2 π 2 \tfrac{(n-1)(2n-1)}{12n^2}\pi^2 \; < \; \sum_{j=1}^{n-1}j^{-2} \; < \; \tfrac{n^2-1}{6n^2}\pi^2 and the result is immediate, since the two outside terms both converge to 1 6 π 2 \tfrac16\pi^2 as n n \to \infty .

How did you think of the first line? It seems quite amazing.

Hansen Chen - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...