New Five Incircles Revolution!

Geometry Level 4

Five identical circles are positioned inside the unit square. Each of the four incircles is tangent to one of the four red lines, whereas one circle is positioned inside the square.

If the radius of the circle is r r , input 1 0 5 r \lfloor 10^5 r\rfloor as your answer.


The answer is 20196.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Fletcher Mattox
Feb 18, 2021

Just for drill, I wanted to see if sympy could solve this.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Find five congruent incircles in the unit square
# See https://www.geogebra.org/classic/eknnqbe2

from sympy import *
from sympy.abc import x

# define the unit square, ABCD
A = Point(0, 0)
B = Point(1, 0)
C = Point(1, 1)
D = Point(0, 1)

E = Point(x, 0)         # let x = AE
F = Point(1, x)         # so x = BF by symmetry
G = Point(1-x, 1)       # so x = GC by symmetry
H = Point(0, 1-x)       # so x = DH by symmetry
M = Point(1/2, 1/2)     # M = centroid ABCD

r1 = Triangle(A, B, F).inradius
r2 = Triangle(C, G, B).inradius
r3 = Triangle(D, H, C).inradius
r4 = Triangle(A, E, D).inradius
r5 = Line(D, E).distance(M)

sol = solve(r1 - r5, x)
for i in sol:
    a = r1.subs(x, i)
    b = r2.subs(x, i)
    c = r3.subs(x, i)
    d = r4.subs(x, i)
    e = r5.subs(x, i)
    print("x = ", simplify(i))
    print("Radius =", N(a))
    print("Checking equality of five radii... ", end=' ')
    print(N(a) == N(b) == N(c) == N(d) == N(e))
    print("Solution: ", floor(N(a) * 10**5))

1
2
3
4
x =  -7/(4*(13 + 16*sqrt(2))**(1/3)) + 1/4 + (13 + 16*sqrt(2))**(1/3)/4
Radius = 0.201964181008339
Checking equality of five radii...  True
Solution:  20196

David Vreken
Feb 17, 2021

Label the diagram as follows, and let A F = E D = k AF = ED = k :

By the Pythagorean Theorem on A D E \triangle ADE , A D = D E 2 + A E 2 = k 2 + 1 AD = \sqrt{DE^2 + AE^2} = \sqrt{k^2 + 1} .

Since A B F A E D \triangle ABF \sim \triangle AED by AA similarity, A B = A F A E A D = k 1 k 2 + 1 = k k 2 + 1 AB = AF \cdot \cfrac{AE}{AD} = k \cdot \cfrac{1}{\sqrt{k^2 + 1}} = \cfrac{k}{\sqrt{k^2 + 1}} and B F = A F D E A D = k k k 2 + 1 = k 2 k 2 + 1 = C D BF = AF \cdot \cfrac{DE}{AD} = k \cdot \cfrac{k}{\sqrt{k^2 + 1}} = \cfrac{k^2}{\sqrt{k^2 + 1}} = CD .

Then B C = A D A B C D = k 2 + 1 k k 2 + 1 k 2 k 2 + 1 = 1 k k 2 + 1 BC = AD - AB - CD = \sqrt{k^2 + 1} - \cfrac{k}{\sqrt{k^2 + 1}} - \cfrac{k^2}{\sqrt{k^2 + 1}} = \cfrac{1 - k}{\sqrt{k^2 + 1}} .

As an incircle of the red square, r = 1 2 B C = 1 2 1 k k 2 + 1 = 1 k 2 k 2 + 1 r = \cfrac{1}{2} BC = \cfrac{1}{2} \cdot \cfrac{1 - k}{\sqrt{k^2 + 1}} = \cfrac{1 - k}{2\sqrt{k^2 + 1}} .

As an incircle of right A D E \triangle ADE , r = 1 2 ( D E + A E A D ) = 1 2 ( k + 1 k 2 + 1 ) r = \cfrac{1}{2}(DE + AE - AD) = \cfrac{1}{2}(k + 1 - \sqrt{k^2 + 1}) .

So r = 1 k 2 k 2 + 1 = 1 2 ( k + 1 k 2 + 1 ) r = \cfrac{1 - k}{2\sqrt{k^2 + 1}} = \cfrac{1}{2}(k + 1 - \sqrt{k^2 + 1}) , which solves numerically to r 0.201964 r \approx 0.201964 and k 0.540790 k \approx 0.540790 .

Therefore, 1 0 5 r = 20196 \lfloor 10^5 r \rfloor = \boxed{20196} .

Chew-Seong Cheong
Feb 21, 2021

Label the unit square A B C D ABCD , red lines A G AG and B I BI , the center of the bottom-right circle O O . Let O E OE and O F OF be perpendicular to A B AB and B C BC respectively, and G A B = θ \angle GAB=\theta . We note that

A E + E B = A B O E cot G A B 2 + O F = A B r cot θ 2 + r = 1 Let t = tan θ 2 r t + r = 1 r = 1 1 t + 1 = t 1 + t \begin{aligned} AE + EB & = AB \\ OE \cdot \cot \frac {\angle GAB}2 + OF & = AB \\ r \cot \theta 2 + r & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac rt + r & = 1 \\ \implies r & = \frac 1{\frac 1t + 1} = \frac t{1+t} \end{aligned}

Due to symmetry, the two pairs of parallel red lines are perpendicular to each other. That is A G B I AG || BI . Let G H B I GH || BI . Then H G C = θ \angle HGC = \theta and:

G H = 2 r C G cos θ = 2 r ( B C B G ) cos θ = 2 r ( 1 tan θ ) cos θ = 2 r cos θ sin θ = 2 r 1 2 t t 2 1 + t 2 = 2 t 1 + t 3 t 3 + 3 t 2 + 3 t 1 = 0 Solving for t by numerical method t 0.253076587 r = t 1 + t 0.201964181 1 0 5 r = 20196 \begin{aligned} GH & = 2r \\ CG \cdot \cos \theta & = 2r \\ (BC - BG) \cos \theta & = 2r \\ (1-\tan \theta) \cos \theta & = 2r \\ \cos \theta - \sin \theta & = 2r \\ \frac {1-2t-t^2}{1+t^2} & = \frac {2t}{1+t} \\ 3t^3+3t^2+3t-1 & = 0 & \small \blue{\text{Solving for }t \text{ by numerical method}} \\ \implies t & \approx 0.253076587 \\ r & = \frac t{1+t} \approx 0.201964181 \\ \implies \lfloor 10^5r \rfloor & = \boxed{20196} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...