New Integral

Calculus Level 5

2 ( x 2 + 1 x 2 ) + 1 x 2 = 4 ( 3 2 2 x 2 3 1 2 x 2 + 1 ) \left|2\left(x^2 + \frac 1{x^2}\right) + \left|1-x^2\right|\right|=4\left(\frac 32-2^{x^2-3} -\frac 1{2^{x^2+1}}\right)

If x 1 x_1 and x 2 x_2 , where x 1 < x 2 x_1<x_2 , are two values of x x satisfying the equation above, find the value of

x 1 + x 2 3 x 2 x 1 { x 4 } ( 1 + tan ( { x } 1 + { x } ) ) d x \int_{x_1+x_2}^{3x_2-x_1}\left\{\frac x4\right \}\left(1+ \left\lfloor \tan \left(\frac{\{x\}}{1+\{x\}}\right)\right \rfloor\right) dx

Notations:


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since the equation is even on both sides, we only need to consider for x 0 x \ge 0 to find the positive solution x 2 x_2 and then x 1 = x 2 x_1 = - x_2 , since x 1 < x 2 x_1 < x_2 . For 0 x 1 0 \le x \le 1 ,

2 ( x 2 + 1 x 2 ) + 1 x 2 = 4 ( 3 2 2 x 2 3 1 2 x 2 + 1 ) x 2 + 2 x 2 + 1 = 6 2 x 2 1 1 2 x 2 1 x 2 + 2 x 2 + 2 x 2 1 + 1 2 x 2 1 = 5 \begin{aligned} 2\left(x^2 + \frac 1{x^2} \right) + 1 - x^2 & = 4 \left(\frac 32 - 2^{x^2-3} - \frac 1{2^{x^2+1}} \right) \\ x^2 + \frac 2{x^2} + 1 & = 6 - 2^{x^2-1} - \frac 1{2^{x^2-1}} \\ x^2 + \frac 2{x^2} + 2^{x^2-1} + \frac 1{2^{x^2-1}} & = 5 \end{aligned}

By inspection, the solution is x 2 = 1 x^2 = 1 or x 1 = 1 x_1 = -1 and x 2 = 1 x_2 = 1 . Then

I = 0 4 { x 4 } ( 1 + tan ( { x } 1 + { x } ) ) d x Note that tan ( { x } 1 + { x } ) = 0 = 0 4 { x 4 } d x = 0 4 x 4 d x = x 2 8 0 4 = 2 \begin{aligned} I & = \int_0^4 \left \{\frac x4 \right \} \left(1 + \left \lfloor \tan \left(\frac {\{x\}}{1+\{x\}} \right) \right \rfloor \right) dx & \small \blue{\text{Note that }\left \lfloor \tan \left(\frac {\{x\}}{1+\{x\}} \right) \right \rfloor = 0} \\ & = \int_0^4 \left \{\frac x4 \right \} dx = \int_0^4 \frac x4\ dx = \frac {x^2}8 \ \bigg|_0^4 = \boxed 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...