New kind of series!

1 + 2 + 3 + 4 5 6 7 8 9 + . . . + 10000 \large -1 + 2 + 3 + 4-5-6-7-8-9 + ... + 10000

Determine the value of the sum above, where the signs change after each perfect square.


The answer is 1000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The sum given can be expressed as S = n = 1 100 ( 1 ) n s n S=\displaystyle \sum_{n=1}^{100} (-1)^n s_n , where s n s_n is the sum of integers lesser than or equal to perfect square n 2 n^2 but greater than ( n 1 ) 2 (n-1)^2 . Therefore,

S = n = 1 100 ( 1 ) s n = n = 1 100 ( 1 ) n k = 1 n 2 ( n 1 ) 2 ( ( n 1 ) 2 + k ) = n = 1 100 ( 1 ) n ( ( n 1 ) 2 ( n 2 ( n 1 ) 2 ) + 1 2 ( n 2 ( n 1 ) 2 ) ( n 2 ( n 1 ) 2 + 1 ) ) = n = 1 100 ( 1 ) n ( ( n 2 2 n + 1 ) ( 2 n 1 ) + 1 2 ( 2 n 1 ) ( 2 n ) ) = n = 1 100 ( 1 ) n ( 2 n 1 ) ( n 2 n + 1 ) = n = 1 100 ( 1 ) n ( 2 n 2 3 n 2 + 3 n 1 ) = n = 1 100 ( 1 ) n ( ( n 1 ) 3 + n 3 ) = 0 3 1 3 + 1 3 + 2 3 2 3 3 3 + + 9 9 3 + 10 0 3 = 1000000 \begin{aligned} S & = \sum_{n=1}^{100} (-1)\color{#3D99F6} s_n \\ & = \sum_{n=1}^{100} (-1)^n\color{#3D99F6} \sum_{k=1}^{n^2-(n-1)^2} \left((n-1)^2+k\right) \\ & = \sum_{n=1}^{100} (-1)^n \left((n-1)^2 \left(n^2-(n-1)^2\right)+\frac 12\left(n^2-(n-1)^2\right)\left(n^2-(n-1)^2+1\right)\right) \\ & = \sum_{n=1}^{100} (-1)^n \left(\left(n^2-2n+1\right) (2n-1)+\frac 12(2n-1)(2n)\right) \\ & = \sum_{n=1}^{100} (-1)^n (2n-1)\left(n^2-n+1\right) \\ & = \sum_{n=1}^{100} (-1)^n \left(2n^2-3n^2+3n-1\right) \\ & = \sum_{n=1}^{100} (-1)^n \left((n-1)^3+n^3\right) \\ & = - 0^3-\cancel{1^3}+\cancel{1^3}+\cancel{2^3}-\cancel{2^3}-\cancel{3^3}+\cdots+\cancel{99^3} + 100^3 \\ & = \boxed{1000000} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...