New Year Countdown - 7

Algebra Level 4

If a 2 + b 2 + c 2 = 1 a^{2} + b^{2} + c^{2} = 1 then the value of a b + b c + c a ab + bc + ca lies in the interval [ X , Y ] [-X,Y] . Find X + Y X+Y .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mehul Chaturvedi
Dec 25, 2014

P l e a s e u p v o t e t h i s s o l u t i o n i f y o u l i k e i t \large\color{#69047E}{Please~ upvote~ this~ solution ~if ~you ~like ~it}

First of all by Rearrangement inequality we can assume a > b > c \large a>b>c

a 2 + b 2 + c 2 a b + b c + c a \large \Rightarrow \therefore a^2+b^2+c^2\geq ab+bc+ca

1 a b + b c + c a \large \Rightarrow 1 \geq ab+bc+ca

Means Y = 1 \large Y=1

And we know that ( a + b + c ) 2 0 \large (a+b+c)^2 \geq 0 ~~ (As a , b , c a,b,c are reals)

\large \therefore a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a 0 \large a^2+b^2+c^2+2ab+2bc+2ca \geq 0

\large \therefore 1 + 2 ( a b + b c + c a ) 0 \large 1+2(ab+bc+ca) \geq 0

\large \therefore ( a b + b c + c a ) 1 2 \large (ab+bc+ca) \geq \dfrac{-1}{2}

X = 1 2 = 0.5 \large \therefore X=\dfrac{1}{2}=0.5

X + Y = 1.5 \Rightarrow \huge \color{#3D99F6}{X+Y=\boxed {1.5}}

cool, I just did the same

Sravanth C. - 6 years, 3 months ago

Why was this 210 points?

Mehul Arora - 6 years, 3 months ago
Omar El Mokhtar
Dec 25, 2014

nous avons: ab+bc+ca=((a+b+c)^2-a^2-b^2-c^2)/2 donc ((a+b+c)^2-1)/2=ab+bc+ca par caushy shwarz:3≥(a+b+c)^2≥0 finalement:1≥ab+bc+ca≥-1/2 alors:x+y=1.5

Bonjour Omar !

Cava ?

Log in to reply

ca va bien merci,puis je vous aider?

Omar El Mokhtar - 6 years ago
Sai Ram
Oct 6, 2015

https://brilliant.org/problems/question-11-2/ \text{https://brilliant.org/problems/question-11-2/} is a similar problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...