New Year Enigma

Which number is bigger:

2015 ! 2015 or 2016 ! 2016 \large{\sqrt[2015]{2015!}\quad\quad \text{or}\quad\quad \sqrt[2016]{2016!}}


Inspired by an old problem from Kosova National Olympiad.
They're equal 2015 ! 2015 \sqrt[2015]{2015!} 2016 ! 2016 \sqrt[2016]{2016!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chris Callahan
Dec 27, 2015

This solution is a little on the long side but because this kind of problem appeals to a large grouping of people with varying abilities I felt it best to leave nothing unexplained. A = 2015 ! 2015 A 2015 = 2015 ! A 2015 A = 2015 ! A A 2016 = 2015 ! 2015 ! 2015 B = 2016 ! 2016 B 2016 = 2016 ! B 2016 = 2015 ! 2016 B e c a u s e w e k n o w A a n d B a r e p o s i t i v e , w e c a n s a y 1 ) I f f B 2016 > A 2016 t h e n B > A 2 ) I f f A 2016 > B 2016 t h e n A > B 3 ) I f f A 2016 = B 2016 t h e n A = B B e c a u s e A 2016 a n d B 2016 c a n b o t h b e w r i t t e n a s 2015 ! m u l t i p l i e d b y s o m e c o n s t a n t , w h o e v e r s c o n s t a n t i s g r e a t e r w i l l b e t h e g r e a t e r n u m b e r T h e c o n s t a n t w h i c h w h e n m u l t i p l i e d w i t h 2015 ! g i v e s A 2016 i s 2015 ! 2015 T h e c o n s t a n t w h i c h w h e n m u l t i p l i e d w i t h 2015 ! g i v e s B 2016 i s 2016 2015 ! 2015 = 2015 2014... 2 1 2015 N o t e t h a t w i t h i n t h e 201 5 t h r o o t a r e 2015 n u m b e r s , a l l o f w h i c h a r e l e s s t h a n 2016 , m u l t i p l i e d t o g e t h e r 2016 = 201 6 2015 2015 N o t e t h a t w i t h i n t h e 201 5 t h r o o t a r e 2015 n u m b e r s , a l l o f w h i c h a r e e q u a l t o 2016 , m u l t i p l i e d t o g e t h e r . O b v i o u s l y 2015 n u m b e r s a l l e q u a l t o 2016 m u l t i p l i e d t o g e t h e r i s g r e a t e r t h a n 2015 n u m b e r s a l l l e s s t h a n 2016 m u l t i p l i e d t o g e t h e r T h e r e f o r e : 2016 > 2015 ! 2015 B 2016 > A 2016 B > A 2016 ! 2016 > 2015 ! 2015 A=\sqrt [ 2015 ]{ 2015! } \\ A^{ 2015 }=2015!\\ A^{ 2015 }\cdot A=2015!\cdot A\\ A^{ 2016 }=2015!\cdot \sqrt [ 2015 ]{ 2015! } \\ \\ B=\sqrt [ 2016 ]{ 2016! } \\ B^{ 2016 }=2016!\\ B^{ 2016 }=2015!\cdot 2016\\ \\ Because\quad we\quad know\quad A\quad and\quad B\quad are\quad positive,\quad we\quad can\quad say\\ 1)\quad Iff\quad B^{ 2016 }>A^{ 2016 }\quad then\quad B>A\\ 2)\quad Iff\quad A^{ 2016 }>B^{ 2016 }\quad then\quad A>B\\ 3)\quad Iff\quad A^{ 2016 }=B^{ 2016 }\quad then\quad A=B\\ \\ Because\quad A^{ 2016 }\quad and\quad B^{ 2016 }\quad can\quad both\quad be\quad written\quad as\quad 2015!\quad multiplied\\ by\quad some\quad constant,\quad whoever's\quad constant\quad is\quad greater\quad will\quad be\quad the\quad greater\quad number\\ \\ The\quad constant\quad which\quad when\quad multiplied\quad with\quad 2015!\quad gives\quad A^{ 2016 }\quad is\quad \sqrt [ 2015 ]{ 2015! } \\ \\ The\quad constant\quad which\quad when\quad multiplied\quad with\quad 2015!\quad gives\quad { B }^{ 2016 }\quad is\quad 2016\quad \\ \\ \sqrt [ 2015 ]{ 2015! } =\sqrt [ 2015 ]{ 2015\cdot 2014...\cdot 2\cdot 1 } \quad Note\quad that\quad within\quad the\quad 2015^{ th\quad }root\quad are\\ 2015\quad numbers,\quad all\quad of\quad which\quad are\quad less\quad than\quad 2016,\quad multiplied\quad together\\ \\ 2016=\sqrt [ 2015 ]{ 2016^{ 2015 } } \quad Note\quad that\quad within\quad the\quad 2015^{ th }\quad root\quad are\quad 2015\quad numbers,\\ all\quad of\quad which\quad are\quad equal\quad to\quad 2016,\quad multiplied\quad together.\\ \\ Obviously\quad 2015\quad numbers\quad all\quad equal\quad to\quad 2016\quad multiplied\quad together\quad is\quad greater\\ than\quad 2015\quad numbers\quad all\quad less\quad than\quad 2016\quad multiplied\quad together\\ \\ Therefore:\\ 2016>\quad \sqrt [ 2015 ]{ 2015! } \\ B^{ 2016 }>A^{ 2016 }\\ B>A\\ \boxed { \sqrt [ 2016 ]{ 2016! } >\sqrt [ 2015 ]{ 2015! } }

FYI There is no need to place everything within the Latex brackets. Use it only where you need to for the equations. E.g. your first paragraph is not contained within Latex.

Calvin Lin Staff - 5 years, 5 months ago

Log in to reply

Sorry about that... still kind of learning how to use Latex.

Chris Callahan - 5 years, 5 months ago

Log in to reply

No worries. It's a learning process and you're off to a good start. I'm excited that you know how to use it pretty well, so I'm giving tips on how to improve further.

Calvin Lin Staff - 5 years, 5 months ago

Yes! I think so.

Prasit Sarapee - 5 years, 5 months ago

Awesome solution!

Rohit Udaiwal - 5 years, 5 months ago

Same Way(+1)

Kushagra Sahni - 5 years, 5 months ago

A nice solution.!!

Prasit Sarapee - 5 years, 5 months ago

I think.
A simple way "induction"
(6!)^(1/6) > (5!)^(1/5)
imply (2016!)^(1/2016) > (2015!)^(1/2015).

Prasit Sarapee - 5 years, 5 months ago
Dudu Bello
Dec 27, 2015

Each of the two numbers is the geometrical mean of the first n natural numbers:

2015 ! 2015 = 2015 2014 2013 . . . 1 2015 \sqrt [ 2015 ]{ 2015! } =\sqrt [ 2015 ]{ 2015\cdot 2014\cdot 2013\cdot ...\cdot 1 }

Note that there are 2015 numbers, so the index is 2015.

2016 ! 2016 = 2016 2015 2014 . . . 1 2016 \sqrt [ 2016 ]{ 2016! } =\sqrt [ 2016 ]{ 2016\cdot 2015\cdot 2014\cdot ...\cdot 1 }

Note that there are 2016 numbers, so the index is 2016.

Analysing a few examples, we can infer that the geometrical mean g(n) of the first n natural numbers increases as n does:

g ( 2 ) = 2 ! = 2 1.4 g(2)=\sqrt{ 2! } =\sqrt{ 2 }\cong 1.4

g ( 3 ) = 3 ! 3 = 6 3 1.8 g(3)=\sqrt [ 3 ]{ 3! } =\sqrt [ 3 ]{ 6 }\cong 1.8

g ( 4 ) = 4 ! 4 = 24 4 > 16 4 g ( 4 ) > 2 g(4)=\sqrt [ 4 ]{ 4! } =\sqrt [ 4 ]{ 24 }>\sqrt [ 4 ]{ 16 }\therefore g(4)>2

Hence, it follows that g ( 2016 ) > g ( 2015 ) 2016 ! 2016 > 2015 ! 2015 g(2016)>g(2015)\therefore \sqrt [ 2016 ]{ 2016! }>\sqrt [ 2015 ]{ 2015! } .

Same way...

Resha Dwika Hefni Al-Fahsi - 5 years, 5 months ago
Ravi Dwivedi
Dec 27, 2015

n ! = n ( n 1 ) . . . 1 n!=n(n-1)...1

( n + 1 ) n = ( n + 1 ) ( n + 1 ) . . ( n + 1 ) (n+1)^n = (n+1)(n+1)..(n+1) ( n n times)

Since each term of the product ( n + 1 ) n (n+1)^n is greater than each term in n ! n!

We have n ! < ( n + 1 ) n n!<(n+1)^n for all natural numbers n n

Write ( n + 1 ) = ( n + 1 ) ! n ! (n+1)=\frac{(n+1)!}{n!} and multiply ( n ! ) n (n!)^n to both the sides

So ( n ! ) n + 1 < ( ( n + 1 ) ! ) n (n!)^{n+1}<((n+1)!)^{n}

Raising both sides by power 1 n ( n + 1 ) \frac{1}{n(n+1)}

( n ! ) 1 n < ( ( n + 1 ) ! ) 1 n + 1 (n!)^{\frac{1}{n}} < ((n+1)!)^{\frac{1}{n+1}}

Put n=2015 and we get ( 2015 ! ) 1 2015 < ( 2016 ! ) 1 2016 (2015!)^{\frac{1}{2015}} < (2016!)^{\frac{1}{2016}} which is the desired result

NOTE: How I got this solution? I worked the same method backwards assuming this inequality. You may assume the inequality the other way to and get a contradiction.

Moderator note:

Good approach. To better express a working backwards solution, we can use statements like:

We want to show that ...
It suffices to show ...
This is true if and only if ...

As an explicit example, the solution could be rewritten as:

( n ! ) 1 n < ( ( n + 1 ) ! ) 1 n + 1 ( n ! ) n + 1 < ( ( n + 1 ) ! ) n n ! < ( n + 1 ) n (n!)^{\frac{1}{n}} < ((n+1)!)^{\frac{1}{n+1}} \Leftrightarrow (n!) ^ {n+1} < ((n+1)!)^n \Leftrightarrow n! < (n+1)^n

The last inequality is obvious (as stated in your solution).

Aaron Ruel
Dec 28, 2015

I used small numbers to justify a trend. Rearranging the question and replacing with variables to look like

( x ! ) 1 x (x!)^{\frac{1}{x}}

It's easy to just plug in small values. When x = 2 x=2 , the answer can be estimated around 1.5 when simplified to ( 2 ) 1 2 (2)^{\frac{1}{2}} .

Use the same method for 3 to compare a higher number that can still be estimated in your head. In this case it's simplified to ( 6 ) 1 3 (6)^{\frac{1}{3}} which can be estimated to 1.8. It can now be said that f ( x ) > f ( x 1 ) f(x) > f(x-1) . Not the best way to do it but it's an easy way if you have just a little experience with roots.

By Stirling's approximation ln (n!)= n ln n-n, i.e., n!= (n/e)^n. Therefore n^th root of n! is n/e. So the result now follows.

Only catch is Stirling's approximation is valid only for large n.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...