New Year Problem (2)

11111 11111 Number of 1’s = 2020 55555 55555 Number of 5’s = 2019 6 \underbrace{11111\cdots 11111}_{\text{Number of 1's}=2020} \underbrace{55555 \cdots 55555}_{\text{Number of 5's}=2019}6

Is the number above a perfect square?

YES NO It can not be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 22, 2019

Consider a number A n = 11111 11111 Number of 1’s = n = k = 0 n 1 1 0 k = 1 0 n 1 9 A_n = \underbrace{11111\cdots11111}_{\text{Number of 1's}=n} = \displaystyle \sum_{k=0}^{n-1} 10^k = \frac {10^n-1}9 . Then

333 3 n 4 2 = ( 30 A n + 4 ) 2 = 900 A n 2 + 240 A n + 16 = 900 ( 1 0 n 1 9 ) A n + 240 A n + 16 = 100 ( 1 0 n 1 ) A n + 240 A n + 16 = 1 0 n + 2 A n + 100 A n + 40 A n + 16 = 111 1 n 000 0 n + 2 + 111 1 n 00 + 444 4 n 0 + 16 = 111 1 n + 1 555 5 n 6 \begin{aligned} \underbrace{333\cdots3}_n4^2 & = (30A_n + 4)^2 \\ & = 900A_n^2 + 240A_n + 16 \\ & = 900 \left(\frac {10^n-1}9\right)A_n + 240A_n + 16 \\ & = 100 \left(10^n-1 \right)A_n + 240A_n + 16 \\ & = 10^{n+2}A_n + 100A_n + 40A_n+ 16 \\ & = \underbrace{111\cdots1}_n\underbrace{000\cdots0}_{n+2}+ \underbrace{111\cdots1}_n00+\underbrace{444 \cdots4}_n0 + 16 \\ & = \underbrace{111\cdots 1}_{n+1}\underbrace{555\cdots5}_n6 \end{aligned}

Put n = 2019 n=2019 and it is "Yes" .

Thank you, nice solution.

Hana Wehbi - 1 year, 5 months ago
Hana Wehbi
Dec 22, 2019

The inspiration to this problem, it came to my mind that 3 4 2 = 1156 , 33 4 2 = 111556 , 333 4 2 = 11115556 34^2=1156, 334^2= 111556, 3334^2= 11115556 and so on. I still need to find a logical solution that works for a general case.

David Vreken
Dec 23, 2019

1111111...1111111 Number of 1’s=2020 5555555...5555555 Number of 5’s=2019 6 \underbrace{1111111 ... 1111111}_\text{Number of 1's=2020} \underbrace{5555555 ... 5555555}_\text{Number of 5's=2019} 6

= 11111...11111 2 * 2020 + 44444...44444 2020 + 1 = \underbrace{11111 ... 11111}_\text{2 * 2020} + \underbrace{44444 ... 44444}_\text{2020} + 1

= 1 0 2 2020 1 9 + 4 1 0 2020 1 9 + 1 = \frac{10^{2 \cdot 2020} - 1}{9} + 4 \cdot \frac{10^{2020} - 1}{9} + 1

= 1 0 2 2020 1 9 2 1 0 2020 1 9 + 2 1 0 2020 1 3 + 1 = \frac{10^{2 \cdot 2020} - 1}{9} - 2 \cdot \frac{10^{2020} - 1}{9} + 2 \cdot \frac{10^{2020} - 1}{3} + 1

= 1 0 2 2020 1 2 ( 1 0 2020 1 ) 9 + 2 1 0 2020 1 3 + 1 = \frac{10^{2 \cdot 2020} - 1 - 2(10^{2020} - 1)}{9} + 2 \cdot \frac{10^{2020} - 1}{3} + 1

= 1 0 2 2020 2 1 0 2020 + 1 9 + 2 1 0 2020 1 3 + 1 = \frac{10^{2 \cdot 2020} - 2 \cdot 10^{2020} + 1}{9} + 2 \cdot \frac{10^{2020} - 1}{3} + 1

= ( 1 0 2020 1 3 ) 2 + 2 1 0 2020 1 3 + 1 = (\frac{10^{2020} - 1}{3})^2 + 2 \cdot \frac{10^{2020} - 1}{3} + 1

= ( 1 0 2020 1 3 + 1 ) 2 = (\frac{10^{2020} - 1}{3} + 1)^2

Thank you, nice solution.

Hana Wehbi - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...