New Year Problem (3)

11111 11111 Number of 1’s = 2019 22222 22222 Number of 2’s = 2020 5 \underbrace{11111\cdots11111}_{\text{Number of 1's} =2019}\underbrace{22222 \cdots 22222}_{\text{Number of 2's}=2020}5

Is the number above a perfect square?

It can not be determined Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 22, 2019

Consider a number A n = 11111 11111 Number of 1’s = n = k = 0 n 1 1 0 k = 1 0 n 1 9 A_n = \underbrace{11111\cdots11111}_{\text{Number of 1's}=n} = \displaystyle \sum_{k=0}^{n-1} 10^k = \frac {10^n-1}9 . Then

333 3 n 5 2 = ( 30 A n + 5 ) 2 = 900 A n 2 + 300 A n + 25 = 900 ( 1 0 n 1 9 ) A n + 300 A n + 25 = 100 ( 1 0 n 1 ) A n + 300 A n + 25 = 1 0 n + 2 A n + 200 A n + 25 = 111 1 n 222 2 n + 1 5 \begin{aligned} \underbrace{333\cdots3}_n5^2 & = (30A_n + 5)^2 \\ & = 900A_n^2 + 300A_n + 25 \\ & = 900 \left(\frac {10^n-1}9\right)A_n + 300A_n + 25 \\ & = 100 \left(10^n-1 \right)A_n + 300A_n + 25 \\ & = 10^{n+2}A_n + 200A_n + 25 \\ & = \underbrace{111\cdots 1}_n\underbrace{222\cdots2}_{n+1}5 \end{aligned}

Put n = 2019 n=2019 and it is "Yes" .

Thank you, nice solution

Hana Wehbi - 1 year, 5 months ago

With Problem 2 in hand, this one was relatively easy.

Richard Desper - 1 year, 5 months ago
David Vreken
Dec 23, 2019

1111111...1111111 Number of 1’s=2019 2222222...2222222 Number of 2’s=2020 5 \underbrace{1111111 ... 1111111}_\text{Number of 1's=2019} \underbrace{2222222 ... 2222222}_\text{Number of 2's=2020} 5

= 11111...11111 2 * 2020 + 11111...11111 2021 + 3 = \underbrace{11111 ... 11111}_\text{2 * 2020} + \underbrace{11111 ... 11111}_\text{2021} + 3

= 1 0 2 2020 1 9 + 1 0 2021 1 9 + 3 = \frac{10^{2 \cdot 2020} - 1}{9} + \frac{10^{2021} - 1}{9} + 3

= 1 0 2 2020 1 9 + 1 0 2021 1 9 9 9 + 9 9 + 3 = \frac{10^{2 \cdot 2020} - 1}{9} + \frac{10^{2021} - 1}{9} - \frac{9}{9} + \frac{9}{9} + 3

= 1 0 2 2020 1 9 + 1 0 2021 10 9 + 4 = \frac{10^{2 \cdot 2020} - 1}{9} + \frac{10^{2021} - 10}{9} + 4

= 1 0 2 2020 1 9 + 10 1 0 2020 1 9 + 4 = \frac{10^{2 \cdot 2020} - 1}{9} + 10 \cdot \frac{10^{2020} - 1}{9} + 4

= 1 0 2 2020 1 9 2 1 0 2020 1 9 + 4 1 0 2020 1 3 + 4 = \frac{10^{2 \cdot 2020} - 1}{9} - 2 \cdot \frac{10^{2020} - 1}{9} + 4 \cdot \frac{10^{2020} - 1}{3} + 4

= 1 0 2 2020 1 2 ( 1 0 2020 1 ) 9 + 4 1 0 2020 1 3 + 4 = \frac{10^{2 \cdot 2020} - 1 - 2(10^{2020} - 1)}{9} + 4 \cdot \frac{10^{2020} - 1}{3} + 4

= 1 0 2 2020 2 1 0 2020 + 1 9 + 4 1 0 2020 1 3 + 4 = \frac{10^{2 \cdot 2020} - 2 \cdot 10^{2020} + 1}{9} + 4 \cdot \frac{10^{2020} - 1}{3} + 4

= ( 1 0 2020 1 3 ) 2 + 4 1 0 2020 1 3 + 4 = (\frac{10^{2020} - 1}{3})^2 + 4 \cdot \frac{10^{2020} - 1}{3} + 4

= ( 1 0 2020 1 3 + 2 ) 2 = (\frac{10^{2020} - 1}{3} + 2)^2

Thank you, nice solution.

Hana Wehbi - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...