New Year Problem (4)

Algebra Level 2

x 2020 + x 2019 + x 2018 + + x 2 + x = 1009.5 x^{2020}+x^{2019}+x^{2018}+\dots+x^2+x = 1009.5

If a 1 , a 2 , a 3 , , a 2020 a_1,a_2, a_3, \dots , a_{2020} are the roots of the polynomial above, what is n = 1 2020 1 1 a n \displaystyle \sum_{n=1}^{2020}\frac{1}{1-a_n} ?


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Dec 24, 2019

Since a 1 , a 2 , a 3 , , a 2020 a_1,a_2,a_3,\dots,a_{2020} are the roots of the polynomial f ( x ) f ( x ) = ( x a 1 ) ( x a 2 ) ( x a 3 ) ( x a 2020 ) f(x)\implies f(x)= (x-a_1)(x-a_2)(x-a_3)\dots(x-a_{2020})

x 2020 + x 2019 + x 2018 + + x 2 + x = 1009.5 ( x a 1 ) ( x a 2 ) ( x a 3 ) ( x a 2020 ) 1009.5 = 0 x^{2020}+x^{2019}+x^{2018}+\dots+x^2+x = 1009.5\implies (x-a_1)(x-a_2)(x-a_3)\dots(x-a_{2020})-1009.5=0

Therefore, by logarithmic differentiation, we obtain f ( x ) f ( x ) = 1 ( x a 1 ) + 1 ( x a 2 ) + 1 ( x a 3 ) + . + 1 ( x a 2020 ) \frac{f’(x)}{f(x)} =\frac{1}{(x-a_1)}+\frac{1}{(x-a_2)} +\frac{1}{(x-a_3)} + \dots. +\frac{1}{(x-a_{2020})}\implies

n = 1 2020 1 1 a n = f ( 1 ) f ( 1 ) = 1 ( 1 a 1 ) + 1 ( 1 a 2 ) + 1 ( 1 a 3 ) + + 1 ( 1 a 2020 ) \sum_{n=1}^{2020}\frac{1}{1-a_n} = \frac{f’(1)}{f(1)} = \frac{1}{(1-a_1)}+\frac{1}{(1-a_2)} +\frac{1}{(1-a_3)} + \dots +\frac{1}{(1-a_{2020})}\implies

n = 1 2020 1 1 a n = 1 + 2 + 3 + + 2019 + 2020 2020 1009.5 = 2020 × 2021 / 2 2020 1009.5 = 2020 \sum_{n=1}^{2020}\frac{1}{1-a_n}= \frac{1+2+3+\dots+2019+2020}{2020-1009.5}=\frac{2020\times 2021/2}{2020-1009.5}=\boxed{2020}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...