New Year Problem (5)

Calculus Level 2

What is the value of the expression below?

n = 0 2020 cos ( π n 2 3 ) \sum_{n=0}^{2020} \cos \Bigg(\frac{\pi n^2}{3}\Bigg)

π 2 2 -\frac{\pi^2}{2} π 2 \frac{\pi}{2} 1 4 -\frac{1}{4} 1 2 -\frac{1}{2} π 3 \frac{\pi}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 26, 2019

S = n = 0 2020 cos ( n 2 π 3 ) = cos 0 + cos π 3 + cos 4 3 π + cos 9 3 π + cos 16 3 π + cos 25 3 π + cos 36 3 π + cos 49 3 π + + cos 202 0 2 3 π = 1 + 1 2 1 2 1 1 2 + 1 2 = 0 + 1 + 1 2 1 2 1 1 2 + 1 2 = 0 + + 1 + 1 2 1 2 1 1 2 + 1 2 = 0 + 1 + 1 2 1 2 1 1 2 = 1 + 1 2 1 2 1 1 2 = 1 2 \begin{aligned} S & = \sum_{n=0}^{2020} \cos \left(\frac {n^2\pi}3 \right) \\ & = \cos 0 + \cos \frac \pi 3 + \cos \frac 43 \pi + \cos \frac 93 \pi + \cos \frac {16}3 \pi + \cos \frac {25}3 \pi + \cos \frac {36}3 \pi + \cos \frac {49}3 \pi + \cdots + \cos \frac {2020^2}3 \pi \\ & = \small \underbrace{1 + \frac 12 - \frac 12 - 1 - \frac 12 + \frac 12}_{=0} + \underbrace{1 + \frac 12 - \frac 12 - 1 - \frac 12 + \frac 12}_{=0} + \cdots + \underbrace{1 + \frac 12 - \frac 12 - 1 - \frac 12 + \frac 12}_{=0} + 1 + \frac 12 - \frac 12 - 1 - \frac 12 \\ & = 1 + \frac 12 - \frac 12 - 1 - \frac 12 \\ & = \boxed {-\frac 12} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...