New Year's Countdown Day 18: Calc and NT for 2018

Calculus Level 3

There is exactly one positive integer p p such that

0 p ( 2018 + x x + x 2018 + x ) d x \displaystyle \int_0^p \left ( \sqrt{\dfrac{2018 + x}{x}} + \sqrt{\dfrac{x}{2018 + x}} \right ) \, dx

is also an integer. Find the sum of the digits of p . p.


This problem is part of the set New Year's Countdown 2017 .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Dec 18, 2017

For simplicity, let a = 2018. a = 2018. Since

( a + x x + x a + x ) d x = ( a + x ) + x x ( a + x ) d x = a + 2 x x ( a + x ) d x = 1 u d u ( Let u = x ( a + x ) , d u = a + 2 x ) = 2 u + C = 2 x ( a + x ) + C = 2 x ( 2018 + x ) + C , \begin{aligned} \displaystyle \int \left ( \sqrt{\dfrac{a + x}{x}} + \sqrt{\dfrac{x}{a + x}} \right ) \, dx &= \displaystyle \int \dfrac{(a + x) + x}{\sqrt{x(a + x)}} \, dx \\ &= \displaystyle \int \dfrac{a + 2x}{\sqrt{x(a + x)}} \, dx \\ &= \displaystyle \int \dfrac{1}{\sqrt{u}} \, du \quad (\text{Let } u = x(a + x), du = a + 2x) \\ &= 2 \sqrt{u} + C \\ &= 2 \sqrt{x(a + x)} + C \\ &= 2 \sqrt{x(2018 + x)} + C, \end{aligned}

we have

0 p ( 2018 + x x + x 2018 + x ) d x = lim n 0 + n p ( 2018 + x x + x 2018 + x ) d x = lim n 0 + [ 2 x ( 2018 + x ) ] n p = lim n 0 + ( 2 p ( 2018 + p ) 2 n ( 2018 + n ) ) = 2 p ( 2018 + p ) . \begin{aligned} \displaystyle \int_0^p \left ( \sqrt{\dfrac{2018 + x}{x}} + \sqrt{\dfrac{x}{2018 + x}} \right ) \, dx &= \lim_{n \rightarrow 0^+} \displaystyle \int_n^p \left ( \sqrt{\dfrac{2018 + x}{x}} + \sqrt{\dfrac{x}{2018 + x}} \right ) \, dx \\ &= \lim_{n \rightarrow 0^+} \left [2 \sqrt{x(2018 + x)} \right]_n^p \\ &= \lim_{n \rightarrow 0^+} \left (2 \sqrt{p(2018 + p)} - 2 \sqrt{n(2018 + n)} \right) \\ &= 2 \sqrt{p(2018 + p)}. \end{aligned}

Since p p is an integer, the expression 2 p ( 2018 + p ) 2 \sqrt{p(2018 + p)} is an integer if p ( 2018 + p ) \sqrt{p(2018 + p)} is. Let b b be a positive integer. We have

p ( 2018 + p ) = k p ( 2018 + p ) = k 2 p 2 + 2018 p k 2 = 0. \begin{aligned} \sqrt{p(2018 + p)} &= k \\ p(2018 + p) &= k^2 \\ p^2 + 2018p - k^2 &= 0. \end{aligned}

In order for this quadratic to have integer solutions, its discriminant must equal a square number. Letting c c be another positive integer, we have

201 8 2 4 ( 1 ) ( k 2 ) = c 2 201 8 2 + ( 2 k ) 2 = c 2 c 2 ( 2 k ) 2 = 201 8 2 ( c + 2 k ) ( c 2 k ) = 201 8 2 . \begin{aligned} 2018^2 - 4(1)(-k^2) &= c^2 \\ 2018^2 + (2k)^2 &= c^2 \\ c^2 - (2k)^2 &= 2018^2 \\ (c + 2k)(c - 2k) &= 2018^2. \end{aligned}

Both c + 2 k c + 2k and c 2 k c - 2k are positive integers, and their sum is ( c + 2 k ) + ( c 2 k ) = 2 c , (c + 2k) + (c - 2k) = 2c, which is a multiple of 2. Because 201 8 2 = 2 2 100 9 2 , 2018^2 = 2^2 \cdot 1009^2, we must partition the 2s between the two factors as such:

c + 2 k = 2 100 9 2 c 2 k = 2. \begin{aligned} c + 2k &= 2 \cdot 1009^2 \\ c - 2k &= 2. \end{aligned}

Solving this system for c c yields c = 100 9 2 + 1. c = 1009^2 + 1. Plugging this value into the quadratic formula yields p = 2018 ± ( 100 9 2 + 1 ) 2 . p = \dfrac{-2018 \pm (1009^2 + 1)}{2}. Since we want positive p , p, we take the plus sign to get p = 2018 + 100 9 2 + 1 2 = 508032 , p = \dfrac{-2018 + 1009^2 + 1}{2} = 508032, which has digit sum 5 + 8 + 3 + 2 = 15 . 5 + 8 + 3 + 2 = \boxed{15}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...