New Year's Countdown Day 26: Day After Christmas Integral

Calculus Level 3

0 π 2 1 12 + 26 cos x d x = 1 a ln b + a c \large \int_0^{\frac{\pi}{2}} \dfrac{1}{12 + 26 \cos x} dx = \dfrac{1}{\sqrt{a}} \ln \sqrt{\dfrac{b + \sqrt{a}}{c}}

Given that the equation above holds true for some positive integers a a , b b , and c c , where a a is square-free, find the value of a + b c a + b - c .


This problem is part of the set New Year's Countdown 2017 .


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 27, 2017

I = 0 π 2 1 12 + 26 cos x d x Let t = tan x 2 d t = 1 2 sec 2 x 2 d x = 0 1 1 12 + 26 ( 1 t 2 1 + t 2 ) 2 d t 1 + t 2 and cos x = 1 t 2 1 + t 2 = 0 1 d t 19 7 t 2 = 0 1 d t ( 19 + 7 t ) ( 19 7 t ) = 1 2 19 0 1 ( 1 19 + 7 t + 1 19 7 t ) d t = 1 2 19 7 [ ln ( 19 + 7 t ) ln ( 19 7 t ) ] 0 1 = 1 2 133 ln ( 19 + 7 19 7 ) = 1 2 133 ln ( ( 19 + 7 ) 2 19 7 ) = 1 2 133 ln ( 26 + 2 133 12 ) = 1 133 ln 13 + 133 6 \begin{aligned} I & = \int_0^\frac \pi 2 \frac 1{12+26\cos x}dx & \small \color{#3D99F6} \text{Let }t = \tan \frac x 2 \implies dt = \frac 12 \sec^2 \frac x 2 \ dx \\ & = \int_0^1 \frac 1{12 + 26\left(\frac {1-t^2}{1+t^2}\right)} \cdot \frac {2\ dt}{1+t^2} & \small \color{#3D99F6} \text{and }\cos x = \frac {1-t^2}{1+t^2} \\ & = \int_0^1 \frac {dt}{19-7t^2} \\ & = \int_0^1 \frac {dt}{(\sqrt{19}+\sqrt 7t)(\sqrt{19}-\sqrt 7t)} \\ & = \frac 1{2\sqrt{19}} \int_0^1 \left(\frac 1{\sqrt{19}+\sqrt 7t} + \frac 1{\sqrt{19}-\sqrt 7t} \right) dt \\ & = \frac 1{2\sqrt{19}\cdot \sqrt 7} \bigg[\ln \left(\sqrt{19}+\sqrt 7t\right) - \ln \left(\sqrt{19}-\sqrt 7t\right) \bigg]_0^1 \\ & = \frac 1{2\sqrt{133}} \ln \left(\frac {\sqrt{19}+\sqrt 7}{\sqrt{19}-\sqrt 7}\right) \\ & = \frac 1{2\sqrt{133}} \ln \left(\frac {\left(\sqrt{19}+\sqrt 7\right)^2}{19-7}\right) \\ & = \frac 1{2\sqrt{133}} \ln \left(\frac {26 + 2\sqrt{133}}{12}\right) \\ & = \frac 1{\sqrt{133}} \ln \sqrt {\frac {13 + \sqrt{133}}6} \end{aligned}

Therefore, a + b c = 133 + 13 6 = 140 a+b-c = 133+13-6 = \boxed{140} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...