New Year's Countdown Day 27: Triangle Tricks

Geometry Level 5

In A B C , \triangle ABC, B = 9 0 \angle B = 90^{\circ} and A C = 2 B C . AC = 2BC. A point P P is located in the interior of A B C \triangle ABC such that P A = 27 P B PA = 27PB and A P B = 12 0 . \angle APB = 120^{\circ}. The value of ( P C P B ) 2 \left ( \dfrac{PC}{PB} \right )^2 can be expressed in the form p q , \dfrac{p}{q}, where p p and q q are relatively prime positive integers. Find the value of p + q . p + q.


This problem is part of the set New Year's Countdown 2017 .


The answer is 682.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Dec 28, 2017

Let P B = x , PB = x, so that P A = 27 x . PA = 27x. Using the Law of Cosines on A P B , \triangle APB, we have

A B 2 = P A 2 + P B 2 2 ( P A ) ( P B ) cos A P B = x 2 + ( 27 x ) 2 2 x ( 27 x ) cos 12 0 = x 2 + 72 9 2 + 27 x 2 = 757 x 2 . \begin{aligned} AB^2 &= PA^2 + PB^2 - 2(PA)(PB) \cos \angle APB \\ &= x^2 + (27x)^2 - 2x(27x) \cos 120^{\circ} \\ &= x^2 + 729^2 + 27x^2 \\ &= 757x^2. \end{aligned}

Thus, A B = x 757 . AB = x\sqrt{757}.

Let O O be the midpoint of A B . AB. From the given information about A B C , \triangle ABC, we deduce that it is a 30-60-90 right triangle, so O O is also the circumcenter of A B C . \triangle ABC. This gives us

B C = C O = O A = O B = A B 3 = x 757 3 . BC = CO = OA = OB = \dfrac{AB}{\sqrt{3}} = x \sqrt{\dfrac{757}{3}}.

Since B O A = B P A = 12 0 , \angle BOA = \angle BPA = 120^{\circ}, quadrilateral B P O A BPOA is a cyclic quadrilateral. By Ptolemy's theorem,

B P O A + B A O P = B O A P x ( x 757 3 ) + x 757 O P = ( x 757 3 ) ( 27 x ) x 3 + O P = 27 x 3 O P = 26 x 3 . \begin{aligned} BP \cdot OA + BA \cdot OP &= BO \cdot AP \\ x \left ( x \sqrt{\dfrac{757}{3}} \right ) + x\sqrt{757} \cdot OP &= \left ( x \sqrt{\dfrac{757}{3}} \right )(27x) \\ \dfrac{x}{\sqrt{3}} + OP &= \dfrac{27x}{\sqrt{3}} \\ OP &= \dfrac{26x}{\sqrt{3}}. \end{aligned}

Now, we focus on B C O . \triangle BCO. Since B C = C O = O B , BC = CO = OB, B C O \triangle BCO is equilateral:

We also have B P O = 15 0 , \angle BPO = 150^{\circ}, since it is supplementary to B A C = 3 0 . \angle BAC = 30^{\circ}. To find the length of P C , PC, we rotate B P O \triangle BPO clockwise 6 0 60^{\circ} about O O to form a new triangle:

Since rotations preserve distances, O P = O P OP = OP' and B P = B P = x . BP = B'P = x. This means P O P \triangle POP' is isosceles, and P P O = P P O . \angle PP'O = \angle P'PO. We also have P O P = 6 0 , \angle POP' = 60^{\circ}, since that is the angle of rotation. Thus,

P P O = P P O = 18 0 P O P 2 = 18 0 6 0 2 = 6 0 , \angle PP'O = \angle PP'O = \dfrac{180^{\circ} - \angle POP'}{2} = \dfrac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ},

and P O P \triangle POP' is equilateral. This gives us P P = P O = 26 x 3 . PP' = PO = \dfrac{26x}{\sqrt{3}}.

Since B P O = B P O = 15 0 , \angle B'P'O = \angle BPO = 150^{\circ}, B P P = 15 0 6 0 = 9 0 , \angle B'P'P = 150^{\circ} - 60^{\circ} = 90^{\circ}, meaning B P P \triangle B'P'P is a right triangle. By the Pythagorean Theorem,

P C 2 = P P 2 + B P 2 = ( 26 x 3 ) 2 + x 2 = 676 x 2 3 + x 2 = 679 x 2 3 . \begin{aligned} PC^2 &= PP'^2 + B'P'^2 \\ &= \left ( \dfrac{26x}{\sqrt{3}} \right )^2 + x^2 \\ &= \dfrac{676x^2}{3} + x^2 \\ &= \dfrac{679x^2}{3}. \end{aligned}

Finally, P C = x 679 3 , PC = x \sqrt{\dfrac{679}{3}}, so ( P C P B ) 2 = 679 3 , \left ( \dfrac{PC}{PB} \right )^2 = \dfrac{679}{3}, and p + q = 679 + 3 = 682 . p + q = 679 + 3 = \boxed{682}.

I missed because I pressed the wrong button and a wrong sign in Cos Rule.

O R \LARGE~~~OR \\ ~~~\\ I n Δ A B C f r o m t h e g i v e n d a t a ; B A 2 = ( 2 B C ) 2 ( B C ) 2 = 3 B C 2 . B C 2 = B A 2 3 . . . . . . . . . . . . . . . . . . ( 1 ) S i n P B A = C o s P B C , . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) S i n c e P B A + P B C = 9 0 o . I n Δ P B A : S i n c e w e a r e i n t e r e s t e d i n r a t i o s a n d g i v e n d a t a d o e s n o t g i v e a n y l e n g t h s W L O G l e t P B = 1 , a n d P A = 27. U s i n g C o s R u l e B A 2 = P B 2 + P A 2 2 P B P A C o s P B A = 1 2 + 2 7 2 + 2 1 27 1 2 = 757................ ( 3 ) F r o m ( 1 ) B C = 757 3 . . . . . . . . . . . . . . . . ( 4 ) U s i n g S i n R u l e S i n P B A = 27 S i n 120 B A = 27 3 2 757 = 27 2 3 757 . . . . . . . . . . . . . . . ( 5 ) U s i n g C o s R u l e i n Δ C B P , F r o m ( 1 ) , C P 2 = P B 2 + B A 2 2 P B B A C o s C B P . F r o m ( 2 ) , ( 4 ) , ( 5 ) , . . . . = 1 2 + ( 757 3 ) 2 1 757 3 3 757 27 2 . = 1 + 757 3 27 = 679 3 . p + q = 679 + 3 = 682 In~ \Delta~ABC~from~the~given ~data;-\\ BA^2=(2BC)^2~-~ (BC)^2=3BC^2.~~~~\therefore~BC^2=\dfrac{BA^2} 3..................(1)\\ SinPBA=CosPBC, .........................(2)~~~~~~~~~Since~\angle~PBA+\angle~PBC=~90^o. \\ In~\Delta~PBA:-\\ Since~we~are~interested~in~ratios~and~given ~data~does~not~give~any~lengths\\ WLOG~let~PB=1,~~and~~PA=27.~~~~\\ Using~Cos~Rule~BA^2=PB^2+PA^2~-~2*PB*PA*CosPBA\\ =1^2+27^2+2*1*27*\frac 1 2 =757................(3)\\ From ~~(1)~~BC=\sqrt{\dfrac{757} 3}................(4) \\ Using~Sin~Rule~~SinPBA=27*\dfrac{Sin120}{BA}=27*\dfrac{\frac {\sqrt3} 2}{\sqrt{757}}=\dfrac{27} 2 * \sqrt{\dfrac 3 {757}}...............(5)\\ Using~Cos~Rule~in~\Delta~CBP,\\ From~(1),~~CP^2=PB^2+BA^2~-~2*PB*BA*CosCBP. ~~~From~(2),(4), (5),....~~~~\\ ~~~~~~~~~~~~~=1^2+(\dfrac{757} 3)~-~2*1*\sqrt{\dfrac{757} 3}* \sqrt{\frac 3 {757}}*\dfrac{27} 2.\\ ~~=1+\dfrac{757} 3~-~27=\dfrac{679} 3.\\ p+q=679+3=\large~~~\color{#D61F06}{682} .

Niranjan Khanderia - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...