Let
f ( x ) = x 6 x 5 − a 4 x 4 + a 3 x 3 − a 2 x 2 + a 1 x − a 0 ,
where a 0 , a 1 , a 2 , a 3 , a 4 are positive integers. Given that
n → ∞ lim n 6 5 1 / n + 3 2 ⋅ 5 2 / n + 2 4 3 ⋅ 5 3 / n + ⋯ + n 5 ⋅ 5 = 5 f ( ln 5 ) ,
find the value of a 0 + a 1 + a 2 + a 3 + a 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First, let's examine the limit. Though it looks scary at first, breaking it up into individual fractions will make a pattern emerge:
n → ∞ lim n 6 5 1 / n + 3 2 ⋅ 5 2 / n + 2 4 3 ⋅ 5 3 / n + ⋯ + n 5 ⋅ 5 = n → ∞ lim ( n 6 1 5 5 1 / n + n 6 2 5 5 2 / n + n 6 3 5 5 3 / n + ⋯ + n 6 n 5 5 n / n ) = n → ∞ lim n 1 ( ( n 1 ) 5 5 1 / n + ( n 2 ) 5 5 2 / n + ( n 3 ) 5 5 3 / n + ⋯ + ( n n ) 5 5 n / n ) = n → ∞ lim i = 1 ∑ n ( n i ) 5 5 i / n n 1 .
We recognize this as the Riemann sum definition of a definite integral . Here, the sum represents the integral of the function g ( x ) = x 5 5 x over the interval [ 0 , 1 ] , so
n → ∞ lim n 6 5 1 / n + 3 2 ⋅ 5 2 / n + 2 4 3 ⋅ 5 3 / n + ⋯ + n 5 ⋅ 5 = ∫ 0 1 x 5 5 x d x .
To find ∫ x 5 5 x d x , we use a table to organize our integration by parts steps:
Sign + − + − + − u x 5 5 x 4 2 0 x 3 6 0 x 2 1 2 0 x 1 2 0 d v 5 x ln 5 5 x ln 2 5 5 x ln 3 5 5 x ln 4 5 5 x ln 5 5 5 x ln 6 5 5 x Term ln 5 x 5 5 x − ln 2 5 5 x 4 5 x ln 3 5 2 0 x 3 5 x − ln 4 5 6 0 x 2 5 x ln 5 5 1 2 0 x 5 x − ln 6 5 1 2 0 ⋅ 5 x
Thus,
∫ x 5 5 x d x = ln 5 x 5 5 x − ln 2 5 5 x 4 5 x + ln 3 5 2 0 x 3 5 x − ln 4 5 6 0 x 2 5 x + ln 5 5 1 2 0 x 5 x − ln 6 5 1 2 0 ⋅ 5 x = ln 6 5 5 x ( ( x ln 5 ) 5 − 5 ( x ln 5 ) 4 + 2 0 ( x ln 5 ) 3 − 6 0 ( x ln 5 ) 2 + 1 2 0 ( x ln 5 ) − 1 2 0 ) .
Plugging in x = 0 yields − ln 6 5 1 2 0 , and plugging in x = 1 yields ln 6 5 5 ( ln 5 5 − 5 ln 4 5 + 2 0 ln 3 5 − 6 0 ln 2 5 + 1 2 0 ln 5 − 1 2 0 ) . The difference between the two is equal to
∫ 0 1 x 5 5 x d x = ln 6 5 5 ( ln 5 5 − 5 ln 4 5 + 2 0 ln 3 5 − 6 0 ln 2 5 + 1 2 0 ln 5 − 9 6 ) ,
which is our final answer for the limit. Comparing the result to the structure of f , we can equate the coefficients and get get ( a 0 , a 1 , a 2 , a 3 , a 4 ) = ( 9 6 , 1 2 0 , 6 0 , 2 0 , 5 ) , the sum of which comes out to a 0 + a 1 + a 2 + a 3 + a 4 = 3 0 1 .