New Year's Countdown Day 5: Fifth Powers

Calculus Level 5

Let

f ( x ) = x 5 a 4 x 4 + a 3 x 3 a 2 x 2 + a 1 x a 0 x 6 , f(x) = \dfrac{x^5 - a_4 x^4 + a_3 x^3 - a_2 x^2 + a_1 x - a_0}{x^6},

where a 0 , a 1 , a 2 , a 3 , a 4 a_0, a_1, a_2, a_3, a_4 are positive integers. Given that

lim n 5 1 / n + 32 5 2 / n + 243 5 3 / n + + n 5 5 n 6 = 5 f ( ln 5 ) , \lim_{n \rightarrow \infty} \dfrac{5^{1/n} + 32 \cdot 5^{2/n} + 243 \cdot 5^{3/n} + \cdots + n^5 \cdot 5}{n^6} = 5f(\ln 5),

find the value of a 0 + a 1 + a 2 + a 3 + a 4 . a_0 + a_1 + a_2 + a_3 + a_4.


This problem is part of the set New Year's Countdown 2017 .


The answer is 301.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Dec 5, 2017

First, let's examine the limit. Though it looks scary at first, breaking it up into individual fractions will make a pattern emerge:

lim n 5 1 / n + 32 5 2 / n + 243 5 3 / n + + n 5 5 n 6 = lim n ( 1 5 5 1 / n n 6 + 2 5 5 2 / n n 6 + 3 5 5 3 / n n 6 + + n 5 5 n / n n 6 ) = lim n 1 n ( ( 1 n ) 5 5 1 / n + ( 2 n ) 5 5 2 / n + ( 3 n ) 5 5 3 / n + + ( n n ) 5 5 n / n ) = lim n i = 1 n ( i n ) 5 5 i / n 1 n . \begin{aligned} \lim_{n \rightarrow \infty} \dfrac{5^{1/n} + 32 \cdot 5^{2/n} + 243 \cdot 5^{3/n} + \cdots + n^5 \cdot 5}{n^6} &= \lim_{n \rightarrow \infty} \left ( \dfrac{1^5 5^{1/n}}{n^6} + \dfrac{2^5 5^{2/n}}{n^6} + \dfrac{3^5 5^{3/n}}{n^6} + \cdots + \dfrac{n^5 5^{n/n}}{n^6} \right ) \\ &= \lim_{n \rightarrow \infty} \dfrac{1}{n} \left ( \left ( \dfrac{1}{n} \right)^5 5^{1/n} + \left ( \dfrac{2}{n} \right)^5 5^{2/n} +\left ( \dfrac{3}{n} \right)^5 5^{3/n} + \cdots + \left ( \dfrac{n}{n} \right)^5 5^{n/n} \right ) \\ &= \lim_{n \rightarrow \infty} \sum_{i = 1}^n \left ( \dfrac{i}{n} \right )^5 5^{i/n} \dfrac{1}{n}. \\ \end{aligned}

We recognize this as the Riemann sum definition of a definite integral . Here, the sum represents the integral of the function g ( x ) = x 5 5 x g(x) = x^5 5^x over the interval [ 0 , 1 ] , [0, 1], so

lim n 5 1 / n + 32 5 2 / n + 243 5 3 / n + + n 5 5 n 6 = 0 1 x 5 5 x d x . \lim_{n \rightarrow \infty} \dfrac{5^{1/n} + 32 \cdot 5^{2/n} + 243 \cdot 5^{3/n} + \cdots + n^5 \cdot 5}{n^6} = \displaystyle \int_0^1 x^5 5^x dx.

To find x 5 5 x d x , \displaystyle \int x^5 5^x dx, we use a table to organize our integration by parts steps:

Sign u d v Term 5 x + x 5 5 x ln 5 x 5 5 x ln 5 5 x 4 5 x ln 2 5 5 x 4 5 x ln 2 5 + 20 x 3 5 x ln 3 5 20 x 3 5 x ln 3 5 60 x 2 5 x ln 4 5 60 x 2 5 x ln 4 5 + 120 x 5 x ln 5 5 120 x 5 x ln 5 5 120 5 x ln 6 5 120 5 x ln 6 5 \begin{array}{c|c|c|c} \text{Sign} & u & dv & \text{Term} \\ \hline & & 5^x & \\ + & x^5 & \dfrac{5^x}{\ln 5} & \dfrac{x^55^x}{\ln 5} \\ - & 5x^4 & \dfrac{5^x}{\ln^2 5} & -\dfrac{5x^45^x}{\ln^2 5} \\ + & 20x^3 & \dfrac{5^x}{\ln^3 5} & \dfrac{20x^35^x}{\ln^3 5} \\ - & 60x^2 & \dfrac{5^x}{\ln^4 5} & -\dfrac{60x^25^x}{\ln^4 5} \\ + & 120x & \dfrac{5^x}{\ln^5 5} & \dfrac{120x5^x}{\ln^5 5} \\ - & 120 & \dfrac{5^x}{\ln^6 5} & -\dfrac{120 \cdot 5^x}{\ln^6 5} \end{array}

Thus,

x 5 5 x d x = x 5 5 x ln 5 5 x 4 5 x ln 2 5 + 20 x 3 5 x ln 3 5 60 x 2 5 x ln 4 5 + 120 x 5 x ln 5 5 120 5 x ln 6 5 = 5 x ( ( x ln 5 ) 5 5 ( x ln 5 ) 4 + 20 ( x ln 5 ) 3 60 ( x ln 5 ) 2 + 120 ( x ln 5 ) 120 ) ln 6 5 . \displaystyle \int x^5 5^x dx = \dfrac{x^55^x}{\ln 5} - \dfrac{5x^45^x}{\ln^2 5} + \dfrac{20x^35^x}{\ln^3 5} - \dfrac{60x^25^x}{\ln^4 5} + \dfrac{120x5^x}{\ln^5 5} - \dfrac{120 \cdot 5^x}{\ln^6 5} = \dfrac{5^x((x \ln 5)^5 - 5(x \ln 5)^4 + 20(x \ln 5)^3 - 60(x \ln 5)^2 + 120(x \ln 5) - 120)}{\ln^6 5}.

Plugging in x = 0 x = 0 yields 120 ln 6 5 , -\dfrac{120}{\ln^6 5}, and plugging in x = 1 x = 1 yields 5 ( ln 5 5 5 ln 4 5 + 20 ln 3 5 60 ln 2 5 + 120 ln 5 120 ) ln 6 5 . \dfrac{5(\ln^5 5 - 5\ln^4 5 + 20\ln^3 5 - 60\ln^2 5 + 120\ln 5 - 120)}{\ln^6 5}. The difference between the two is equal to

0 1 x 5 5 x d x = 5 ( ln 5 5 5 ln 4 5 + 20 ln 3 5 60 ln 2 5 + 120 ln 5 96 ) ln 6 5 , \displaystyle \int_0^1 x^5 5^x dx = \dfrac{5(\ln^5 5 - 5\ln^4 5 + 20\ln^3 5 - 60\ln^2 5 + 120\ln 5 - 96)}{\ln^6 5},

which is our final answer for the limit. Comparing the result to the structure of f , f, we can equate the coefficients and get get ( a 0 , a 1 , a 2 , a 3 , a 4 ) = ( 96 , 120 , 60 , 20 , 5 ) , (a_0, a_1, a_2, a_3, a_4) = (96, 120, 60, 20, 5), the sum of which comes out to a 0 + a 1 + a 2 + a 3 + a 4 = 301 . a_0 + a_1 + a_2 + a_3 + a_4 = \boxed{301}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...