New year's first post

ϕ ( n ) = 20192019 20192019 Number of 2019s = n m o d ( 72 ) \phi(n) =\underbrace{20192019\cdots 20192019}_{\text{Number of 2019s } = n}\bmod(72)

For function ϕ ( n ) \phi(n) as defined above, find the value of ( ϕ ( 2017 ) ) 2 + ( ϕ ( 2018 ) ) 2 ( ϕ ( 2019 ) ) 2 + 2 ( ϕ ( 2019 ) + ϕ ( 2018 ) ) -(\phi(2017))^2+(\phi(2018))^2-(\phi(2019))^2+2(\phi(2019)+\phi(2018))


This is an original problem


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let N ( n ) = 20192019 20192019 Number of 2019s = n N(n)= \underbrace{20192019\cdots 20192019}_{\text{Number of 2019s }= n} . Since gcd ( N ( n ) , 72 ) 1 \gcd(N(n), 72) \ne 1 , we consider N ( n ) m o d 8 N(n) \bmod 8 and N ( n ) m o d 9 N(n) \bmod 9 separately using Chinese remainder theorem .

For factor 8: N ( n ) 1 0 4 N ( n 1 ) + 2019 3 (mod 8) N(n) \equiv {\color{#3D99F6}10^4 N(n-1)} + 2019 \equiv 3 \text{ (mod 8)} . Therefore, N ( n ) 8 m + 3 N(n) \equiv 8m+3 , where m m is an integer.

For factor 9: We note that the sum of digits of N ( n ) N(n) is 12 n 12n . Since 12 n 12n is divisible by 9, when n n is a multiple of 3, then N ( n ) m o d 9 = 0 N(n) \bmod 9 = 0 , when 3 n 3\mid n . Then there are three cases:

{ If n m o d 3 = 0 N ( n ) 12 n 0 (mod 9) 8 m + 3 0 (mod 9) m = 3 ϕ ( 3 ) m o d 72 = 27 If n m o d 3 = 1 N ( n ) 12 n 3 (mod 9) 8 m + 3 3 (mod 9) m = 0 ϕ ( 1 ) m o d 72 = 3 If n m o d 3 = 2 N ( n ) 12 n 6 (mod 9) 8 m + 3 6 (mod 9) m = 6 ϕ ( 2 ) m o d 72 = 51 \begin{cases} \text{If } n \bmod 3 = 0 & \implies N(n) \equiv 12 n \equiv 0 \text{ (mod 9)} & \implies 8m+3 \equiv 0 \text{ (mod 9)} \implies m = 3 \implies \phi (3) \bmod 72 = 27 \\ \text{If } n \bmod 3 = 1 & \implies N(n) \equiv 12n \equiv 3 \text{ (mod 9)} & \implies 8m+3 \equiv 3 \text{ (mod 9)} \implies m = 0 \implies \phi (1) \bmod 72 = 3 \\ \text{If } n \bmod 3 = 2 & \implies N(n) \equiv 12n \equiv 6 \text{ (mod 9)} & \implies 8m+3 \equiv 6 \text{ (mod 9)} \implies m = 6 \implies \phi (2) \bmod 72 = 51 \end{cases}

Therefore,

x = ϕ 2 ( 2017 ) + ϕ 2 ( 2018 ) ϕ 2 ( 2019 ) + 2 ( ϕ ( 2019 ) + ϕ ( 2018 ) ) = ϕ 2 ( 1 ) + ϕ 2 ( 2 ) ϕ 2 ( 3 ) + 2 ( ϕ ( 3 ) + ϕ ( 2 ) ) = 3 2 + 5 1 2 2 7 2 + 2 ( 27 + 51 ) = 2019 \begin{aligned} x & = -\phi^2(2017) + \phi^2 (2018) - \phi^2(2019) + 2(\phi(2019) + \phi(2018)) \\ & = -\phi^2(1) + \phi^2 (2) - \phi^2(3) + 2(\phi(3) + \phi(2)) \\ & = -3^2 + 51^2 - 27^2 + 2(27 + 51) \\ & = \boxed{2019} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...