New years radical!!(in advance)

Algebra Level 5

Find the sum of all positive integers ( a , b ) (a,b) such that

( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) 4 ( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) 4 = 4 ( a + b + a 2 + b 2 ) . \small{\small{\sqrt{\dfrac{(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}{4}\sqrt{\dfrac{(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}{4}\sqrt{\dots\dots}}}=4(a+b+\sqrt{a^2+b^2})}}.

Details and Assumptions

  • ( a , b ) (a,b) is same as ( b , a ) (b,a) , no need to add twice.
  • This is inspired by Mursalin Habib.


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Dec 29, 2014

first, by simple manipulation, ( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) 4 × 4 ( a + b + a 2 + b 2 ) = 4 ( a + b + a 2 + b 2 ) \small{\small{\sqrt{\dfrac{(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}{4}\times 4(a+b+\sqrt{a^2+b^2})}}=4(a+b+\sqrt{a^2+b^2})} 1 4 ( a + b + a 2 + b 2 ) ( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) = a + b + a 2 + b 2 \dfrac{1}{4}\small{\small{\sqrt{(a+b+\sqrt{a^2+b^2})(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}}}=a+b+\sqrt{a^2+b^2} now , a , b , a 2 + b 2 \quad a,b,\sqrt{a^2+b^2}\quad are sides of Pythagorean triangle. and 1 4 ( a + b + a 2 + b 2 ) ( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) \dfrac{1}{4}\small{\small{\sqrt{(a+b+\sqrt{a^2+b^2})(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}}} is the area of a Pythagorean triangle by heron's. the question is translated into " the right angle triangle with same area and perimetre" \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad re-write the equation as a + b + a 2 + b 2 = a b 2 a 2 + b 2 = a 2 b 2 4 a b ( a + b ) + a 2 + b 2 + 2 a b a+b+\sqrt{a^2+b^2}=\dfrac{ab}{2}\rightarrow a^2 +b^2 =\dfrac{a^2b^2}{4}-ab(a+b)+a^2 +b^2 +2ab a 2 b 2 4 + 2 a b a b 2 a 2 b = 0 \dfrac{a^2b^2}{4} + 2ab-ab^2-a^2b=0 multiplying both sides by 4 a b \dfrac{4}{ab} a b 4 a 4 b + 8 = 0 ( a 4 ) ( b 4 ) = 8 ab-4a-4b+8=0\longrightarrow (a-4)(b-4)=8 8 can be written as 8 = 2 × 4 = 1 × 8 8=2\times 4=1\times 8 so { a 4 = 2 a = 6 b 4 = 4 b = 8 a 4 = 1 a = 5 b 4 = 8 b = 12 \begin{cases} a-4 =2\rightarrow a=6\\ b-4=4 \rightarrow b=8\\ a-4=1 \rightarrow a=5\\ b-4=8 \rightarrow b=12 \end{cases} 6 + 8 + 5 + 12 = 3 1 \therefore 6+8+5+12=\boxed{\color{#D61F06}{\large{3}}\color{#20A900}{\large{1}}}

Overrated!

No need of that pythagorean and that triangle approach, although it is nice observation.

( a + b + a 2 + b 2 ) ( a b + a 2 + b 2 ) ( a + b a 2 + b 2 ) 4 = 4 ( a + b + a 2 + b 2 ) \frac{(-a + b + \sqrt{{a}^{2} + {b}^{2}})(a - b + \sqrt{{a}^{2} + {b}^{2}})(a + b - \sqrt{{a}^{2} + {b}^{2}})}{4} = 4(a + b + \sqrt{{a}^{2} + {b}^{2}})

which after some bashing,

2 a b 4 = 4 ( a + b + a 2 + b 2 ) a + b a 2 + b 2 \frac{2ab}{4} = \frac{4(a + b + \sqrt{{a}^{2} + {b}^{2}})}{a + b - \sqrt{{a}^{2} + {b}^{2}}}

which on multiplying and dividing by 1 on RHS and a little manipulation,

a b 2 = 2 ( a + b + a 2 + b 2 ) 2 {ab}^{2} = {2(a + b + \sqrt{{a}^{2} + {b}^{2}})}^{2}

a b 2 a 2 b = 2 a 2 + b 2 ab - 2a - 2b = 2\sqrt{{a}^{2} + {b}^{2}}

which on squaring and a little more bashing,

a b 2 + 8 a b = 4 a 2 b + 4 b 2 a {ab}^{2} + 8ab = 4{a}^{2}b + 4{b}^{2}a

Hence, a b + 8 = 4 ( a + b ) ab + 8 = 4(a+b)

( a 4 ) ( b 4 ) = 8 (a-4)(b-4) = 8

and then the same as you did.

Kartik Sharma - 6 years, 5 months ago

Log in to reply

Very good , but his observation was wonderful

U Z - 6 years, 5 months ago

Log in to reply

Yeah! I agree!

Kartik Sharma - 6 years, 5 months ago

Actually he created that problem brother! So he would have reverse engineered it!!

shivamani patil - 6 years, 5 months ago

Very nice observation , a great problem

U Z - 6 years, 5 months ago

Oh wow. That is nice. Did not think of that.

Ryan Tamburrino - 6 years, 5 months ago

Oh it is really an excellent approach....Unthinkable!!!!!

Asteway Gashaw - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...