Newton or Vieta?

Algebra Level 4

Let r 1 r_1 , r 2 r_2 , r 3 r_3 , ..., and r 20 r_{20} be the roots of the equation z 20 19 z + 2 = 0 z^{20}-19z+2=0 .

Find

r 1 20 + r 2 20 + r 3 20 + + r 20 20 r_1^{20}+r_2^{20}+r_3^{20}+\dots+r_{20}^{20}


The answer is -40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 26, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

Since r k r_k , for k = 1 , 2 , 3 , . . . , 20 k=1,2,3, ... , 20 , is a root of z 20 19 z + 2 = 0 z^{20}-19z+2 = 0 , then r k 20 19 r k + 2 = 0 r_k^{20}-19r_k+2 = 0 , z 20 = 19 z 2 \implies z^{20} = 19z - 2 . Therefore, we have:

k = 1 20 r k 20 = k = 1 20 ( 19 r k 2 ) = 19 k = 1 20 r k 2 k = 1 20 1 Vieta’s formula: k = 1 20 r k = 0 = 40 \begin{aligned} \sum_{k=1}^{20} r_k^{20} & = \sum_{k=1}^{20} (19r_k - 2) \\ & = 19 \color{#3D99F6}{\sum_{k=1}^{20} r_k} - 2 \sum_{k=1}^{20} 1 \quad \quad \small \color{#3D99F6}{\text{Vieta's formula: }\sum_{k=1}^{20} r_k = 0} \\ & = \boxed{-40} \end{aligned}

Did the exact same..

Aditya Kumar - 4 years, 11 months ago

same solution!!!!upvoted!!!

rajdeep brahma - 3 years ago
Hung Woei Neoh
Jul 10, 2016

Define the following terms

S 1 = r 1 + r 2 + + r 20 S 2 = r 1 r 2 + r 2 r 3 + + r 19 r 20 S 3 = r 1 r 2 r 3 + r 1 r 2 r 4 + + r 18 r 19 r 20 S 20 = r 1 r 2 r 3 r 18 r 19 r 20 S_1 = r_1+r_2+\ldots+r_{20}\\ S_2 = r_1r_2+r_2r_3+\ldots+r_{19}r_{20}\\ S_3=r_1r_2r_3+r_1r_2r_4+\ldots+r_{18}r_{19}r_{20}\\ \vdots\\ S_{20}=r_1r_2r_3\ldots r_{18}r_{19}r_{20}

From Vieta's formula, we know that:

S 1 = S 2 = = S 18 = 0 S 19 = 19 S 20 = 2 \color{#3D99F6}{S_1=S_2=\ldots=S_{18}=0}\\ \color{#D61F06}{S_{19}=19}\\ \color{#EC7300}{S_{20}=2}

Next, we define

P 1 = r 1 + r 2 + + r 20 P 2 = r 1 2 + r 2 2 + + r 20 2 P 3 = r 1 3 + r 2 3 + + r 20 3 P 20 = r 1 20 + r 2 20 + + r 20 20 P_1 = r_1+r_2+\ldots+r_{20}\\ P_2 = r_1^2+r_2^2+\ldots+r_{20}^2\\ P_3 = r_1^3+r_2^3+\ldots+r_{20}^3\\ \vdots\\ P_{20} = r_1^{20}+r_2^{20}+\ldots+r_{20}^{20}

We are looking for the value of P 20 P_{20} , and it can be calculated as:

P 20 = S 1 P 19 S 2 P 18 + S 3 P 17 S 4 P 16 + S 5 P 15 S 6 P 14 + S 7 P 13 S 8 P 12 + S 9 P 11 S 10 P 10 + S 11 P 9 S 12 P 8 + S 13 P 7 S 14 P 6 + S 15 P 5 S 16 P 4 + S 17 P 3 S 18 P 2 + S 19 P 1 20 S 20 P_{20} = \color{#3D99F6}{S_1}P_{19}-\color{#3D99F6}{S_2}P_{18}+\color{#3D99F6}{S_3}P_{17}-\color{#3D99F6}{S_4}P_{16}+\color{#3D99F6}{S_5}P_{15}-\color{#3D99F6}{S_6}P_{14}+\color{#3D99F6}{S_{7}}P_{13}-\color{#3D99F6}{S_{8}}P_{12}+\color{#3D99F6}{S_{9}}P_{11}-\color{#3D99F6}{S_{10}}P_{10}\\+\color{#3D99F6}{S_{11}}P_{9}-\color{#3D99F6}{S_{12}}P_{8}+\color{#3D99F6}{S_{13}}P_{7}-\color{#3D99F6}{S_{14}}P_{6}+\color{#3D99F6}{S_{15}}P_{5}-\color{#3D99F6}{S_{16}}P_{4}+\color{#3D99F6}{S_{17}}P_{3}-\color{#3D99F6}{S_{18}}P_{2}+\color{#D61F06}{S_{19}}P_{1}-20\color{#EC7300}{S_{20}}

Notice that the first 18 18 terms are all 0 0 . This leaves us with

P 20 = S 19 P 1 20 S 20 P_{20} = \color{#D61F06}{S_{19}}P_{1}-20\color{#EC7300}{S_{20}}

Note that P 1 = S 1 = 0 P_1=\color{#3D99F6}{S_1}=0 . Therefore,

P 20 = S 19 S 1 20 S 20 = 19 ( 0 ) 20 ( 2 ) = 40 P_{20} = \color{#D61F06}{S_{19}}\color{#3D99F6}{S_1}-20\color{#EC7300}{S_{20}}\\ =\color{#D61F06}{19}(\color{#3D99F6}{0})-20(\color{#EC7300}{2})\\ =\boxed{-40}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...