Let the roots of the polynomial P ( x ) = x 3 + 3 x 2 + 4 x − 8 be r , s and t .
Find the value of r 3 + s 3 + t 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Newton's Sum is an easy way.
Log in to reply
That's why I gave the hint in the heading.
Let P ( x ) = x 3 + 3 x 2 + 4 x − 8 and P n = r n + s n + t n .
By using Newton’s Sums ,
( 1 ) P 1 + 3 = 0 ⇒ P 1 = − 3 ( 1 ) P 2 + ( 3 ) P 1 + 8 = 0 ⇒ P 2 = 1 ( 1 ) P 3 + ( 3 ) P 2 + ( 4 ) P 1 − 2 4 = 0 ⇒ P 3 = 3 3
Using the identity:
a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a )
Putting the values from the P ( x )
⇒ r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 − r s − s t − t r ) + 3 r s t
⇒ r 3 + s 3 + t 3 = ( − 3 ) ( − 3 ) + 2 4 = 3 3
We have,
x³+3x²+4x-8=0.
x³-x²+4x²-4x+8x-8=0.
x²(x-1)+4x(x-1)+8(x-1)=0.
(x-1)(x²+4x+1)=0.
Therefore, r=1.
Now, for x²+4x+1=0.
s+t=-4 and st=8.
Using these two equations,
s³+t³=32.
Therefore, r³+s³+t³=33.
Problem Loading...
Note Loading...
Set Loading...
As you know identity
r 3 + s 3 + t 3 − 3 r s t = ( r + s + t ) ( r 2 + s 2 + t 2 − r s − s t − t r )
→Now, transposing ( − 3 r s t ) to RHS .
r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 − r s − s t − t r ) + 3 r s t ....... ( ★ )
Now applying Vieta's formula in cubic polynomial x 3 + 3 x 2 + 4 x − 8 .
Taking Roots as r , s , t .
● r + s + t = a − b = − 3 ..... ( 1 )
● r s + s t + t r = a c = 4 ..... ( 2 )
● r × s × t = a − d = 8 ...... ( 3 )
Now, Simplying ( ★ )
r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 − r s − s t − t r ) + 3 r s t = ( r + s + t ) [ ( r + s + t ) 2 − 3 ( r s + s t + t r ) ] + 3 r s t
Now, putting values from ( 1 ) , ( 2 ) , ( 3 )
r 3 + s 3 + t 3 = ( − 3 ) [ ( − 3 ) 2 − 3 ( 4 ) ] + 3 × 8
r 3 + s 3 + t 3 = ( − 3 ) × ( − 3 ) + 2 4
r 3 + s 3 + t 3 = 3 3