Newton says Polynomial

Algebra Level 3

Let the roots of the polynomial P ( x ) = x 3 + 3 x 2 + 4 x 8 P(x)=x^3+3x^2+4x-8 be r , s r,s and t t .

Find the value of r 3 + s 3 + t 3 r^3 + s^3 + t^3 .


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

As you know identity
r 3 + s 3 + t 3 3 r s t = ( r + s + t ) ( r 2 + s 2 + t 2 r s s t t r ) r^3+s^3+t^3-3rst=(r+s+t)(r^2+s^2+t^2-rs-st-tr)
→Now, transposing ( 3 r s t ) (-3rst) to RHS .
r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 r s s t t r ) + 3 r s t r^3+s^3+t^3=(r+s+t)(r^2+s^2+t^2-rs-st-tr)+3rst ....... ( ) (★)
Now applying Vieta's formula in cubic polynomial x 3 + 3 x 2 + 4 x 8 x^3+3x^2+4x-8 .
Taking Roots as r , s , t r,s,t .
r + s + t = b a = 3 r+s+t=\frac{-b}{a}=-3 ..... ( 1 ) (1)
r s + s t + t r = c a = 4 rs+st+tr=\frac{c}{a}=4 ..... ( 2 ) (2)
r × s × t = d a = 8 r×s×t=\frac{-d}{a}=8 ...... ( 3 ) (3)
Now, Simplying ( ) (★)
r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 r s s t t r ) + 3 r s t = ( r + s + t ) [ ( r + s + t ) 2 3 ( r s + s t + t r ) ] + 3 r s t r^3+s^3+t^3=(r+s+t)(r^2+s^2+t^2-rs-st-tr)+3rst=(r+s+t)[(r+s+t)^2-3(rs+st+tr)]+3rst
Now, putting values from ( 1 ) , ( 2 ) , ( 3 ) (1),(2),(3)
r 3 + s 3 + t 3 = ( 3 ) [ ( 3 ) 2 3 ( 4 ) ] + 3 × 8 r^3+s^3+t^3=(-3)[(-3)^2-3(4)]+3×8
r 3 + s 3 + t 3 = ( 3 ) × ( 3 ) + 24 r^3+s^3+t^3=(-3)×(-3)+24
r 3 + s 3 + t 3 = 33 r^3+s^3+t^3=\boxed{33}


Using Newton's Sum is an easy way.

Akshat Sharda - 5 years, 6 months ago

Log in to reply

That's why I gave the hint in the heading.

Anish Harsha - 5 years, 6 months ago

Log in to reply

There was no hint required.

Akshat Sharda - 5 years, 6 months ago
Akshat Sharda
Nov 24, 2015

Let P ( x ) = x 3 + 3 x 2 + 4 x 8 P(x)=x^3+3x^2+4x-8 and P n = r n + s n + t n P_{n}=r^{n}+s^{n}+t^{n} .

By using Newton’s Sums \text{Newton's Sums} ,

( 1 ) P 1 + 3 = 0 P 1 = 3 ( 1 ) P 2 + ( 3 ) P 1 + 8 = 0 P 2 = 1 ( 1 ) P 3 + ( 3 ) P 2 + ( 4 ) P 1 24 = 0 P 3 = 33 (1)P_{1}+3=0\Rightarrow P_{1}=-3 \\ (1)P_{2}+(3)P_{1}+8=0\Rightarrow P_{2}=1 \\ (1)P_{3}+(3)P_{2}+(4)P_{1}-24=0\Rightarrow P_{3}=\boxed{33}

Siddharth Singh
Nov 24, 2015

Using the identity:

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

Putting the values from the P ( x ) P(x)

\Rightarrow r 3 + s 3 + t 3 = ( r + s + t ) ( r 2 + s 2 + t 2 r s s t t r ) + 3 r s t r^{3}+s^{3}+t^{3}=(r+s+t)(r^{2}+s^{2}+t^{2}-rs-st-tr)+3rst

\Rightarrow r 3 + s 3 + t 3 = ( 3 ) ( 3 ) + 24 = 33 r^{3}+s^{3}+t^{3}=(-3)(-3)+24=33

Atul Kumar Ashish
Jan 16, 2016

We have,
x³+3x²+4x-8=0.
x³-x²+4x²-4x+8x-8=0.
x²(x-1)+4x(x-1)+8(x-1)=0.
(x-1)(x²+4x+1)=0.
Therefore, r=1.
Now, for x²+4x+1=0.
s+t=-4 and st=8.
Using these two equations,
s³+t³=32.
Therefore, r³+s³+t³=33.


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...