Newton's Beautiful Problem

Algebra Level 3

{ x + y + z = 6 x 2 + y 2 + z 2 = 12 x 3 + y 3 + z 3 = 24 \large \begin {cases} x+y+z=6\\x^2+y^2+z^2=12\\x^3+y^3+z^3 = 24 \end {cases}

Find x ! × y ! × z ! x! \times y! \times z! .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 14, 2016

Using Cauchy-Schwartz inequality , we have:

( x + y + z ) 2 3 ( x 2 + y 2 + z 2 ) 36 = 36 \begin{aligned} (x+y+z)^2 & \le 3(x^2+y^2+z^2) \\ 36 & = 36 \end{aligned}

We note that LHS=RHS, meaning equality occurs and x = y = z = 2 x=y=z=2 , x 2 + y 2 + z 2 = 12 \implies x^2+y^2+z^2 = 12 and x 3 + y 3 + z 3 = 24 x^3+y^3+z^3 = 24 . Therefore, x ! y ! z ! = 8 x!y!z! = \boxed{8} .

In order to apply CS, why must these terms be real?

Calvin Lin Staff - 5 years ago

Log in to reply

CS works only on inner products which are scalars, real values.

Chew-Seong Cheong - 4 years, 12 months ago

Log in to reply

My point is that you are making the assumption that x , y , z x,y,z are real values.

Note: CS works on inner products, even complex inner product, where < u , v > = u v < u , v > = u \overline{v} . So, it doesn't necessarily need to be real values, but just evaluated correctly.

Calvin Lin Staff - 4 years, 12 months ago

x y + y z + x z = ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 2 = 36 12 2 = 12 = x 2 + y 2 + z 2 xy + yz + xz = \dfrac{(x+y+z)^2 -(x^2+y^2+z^2)}{2} = \dfrac{36-12}{2} = 12 = x^2 + y^2 + z^2
x 2 + y 2 + z 2 x y y z x z = 0 \therefore x^2 + y^2 + z^2 - xy - yz - xz = 0
( x y ) 2 + ( y z ) 2 + ( x z ) 2 2 = 0 x = y = z \therefore \dfrac{(x-y)^2 + (y-z)^2 + (x-z)^2}{2} = 0 \to x = y = z
Using equation 1,
3 x = 6 , x = y = z = 2 3x = 6 , \to x = y = z = 2
x ! y ! z ! = 2 3 = 8 x!y!z! = 2^3 = 8



Hung Woei Neoh
Jun 15, 2016

Newton's sums method:

x + y + z = 6 x 2 + y 2 + z 2 = ( x + y + z ) 2 2 ( x y + x z + y z ) 12 = 6 2 2 ( x y + x z + y z ) x y + x z + y z = 12 x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 ) ( x y + x z + y z ) ( x + y + z ) + 3 x y z 24 = 6 ( 12 ) 12 ( 6 ) + 3 x y z x y z = 8 x+y+z = 6\\ x^2+y^2+z^2 = (x+y+z)^2 - 2(xy+xz+yz)\\ 12=6^2 - 2(xy+xz+yz)\\ \implies xy+xz+yz=12\\ x^3+y^3+z^3 = (x+y+z)(x^2+y^2+z^2) - (xy+xz+yz)(x+y+z) + 3xyz\\ 24 = 6(12) - 12(6) + 3xyz\\ \implies xyz=8

Use this to form a cubic equation:

a 3 6 a 2 + 12 a 8 = 0 a 3 3 ( 2 ) a 2 + 3 ( 2 2 ) a 2 3 = 0 ( a 2 ) 3 = 0 a = 2 a^3-6a^2+12a-8 = 0\\ a^3 - 3(2)a^2 + 3(2^2)a - 2^3 = 0\\ (a-2)^3 = 0\\ \implies a=2

Therefore, we know that x = y = z = 2 x=y=z=2

x ! × y ! × z ! = 2 ! × 2 ! × 2 ! = 8 \implies x! \times y! \times z! = 2! \times 2! \times 2! = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...