⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x + y + z = 6 x 2 + y 2 + z 2 = 1 2 x 3 + y 3 + z 3 = 2 4
Find x ! × y ! × z ! .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In order to apply CS, why must these terms be real?
Log in to reply
CS works only on inner products which are scalars, real values.
Log in to reply
My point is that you are making the assumption that x , y , z are real values.
Note: CS works on inner products, even complex inner product, where < u , v > = u v . So, it doesn't necessarily need to be real values, but just evaluated correctly.
x
y
+
y
z
+
x
z
=
2
(
x
+
y
+
z
)
2
−
(
x
2
+
y
2
+
z
2
)
=
2
3
6
−
1
2
=
1
2
=
x
2
+
y
2
+
z
2
∴
x
2
+
y
2
+
z
2
−
x
y
−
y
z
−
x
z
=
0
∴
2
(
x
−
y
)
2
+
(
y
−
z
)
2
+
(
x
−
z
)
2
=
0
→
x
=
y
=
z
Using equation 1,
3
x
=
6
,
→
x
=
y
=
z
=
2
x
!
y
!
z
!
=
2
3
=
8
Newton's sums method:
x + y + z = 6 x 2 + y 2 + z 2 = ( x + y + z ) 2 − 2 ( x y + x z + y z ) 1 2 = 6 2 − 2 ( x y + x z + y z ) ⟹ x y + x z + y z = 1 2 x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 ) − ( x y + x z + y z ) ( x + y + z ) + 3 x y z 2 4 = 6 ( 1 2 ) − 1 2 ( 6 ) + 3 x y z ⟹ x y z = 8
Use this to form a cubic equation:
a 3 − 6 a 2 + 1 2 a − 8 = 0 a 3 − 3 ( 2 ) a 2 + 3 ( 2 2 ) a − 2 3 = 0 ( a − 2 ) 3 = 0 ⟹ a = 2
Therefore, we know that x = y = z = 2
⟹ x ! × y ! × z ! = 2 ! × 2 ! × 2 ! = 8
Problem Loading...
Note Loading...
Set Loading...
Using Cauchy-Schwartz inequality , we have:
( x + y + z ) 2 3 6 ≤ 3 ( x 2 + y 2 + z 2 ) = 3 6
We note that LHS=RHS, meaning equality occurs and x = y = z = 2 , ⟹ x 2 + y 2 + z 2 = 1 2 and x 3 + y 3 + z 3 = 2 4 . Therefore, x ! y ! z ! = 8 .