Newton's large sum

Algebra Level 5

Given that x , y , z x,y,z are complex numbers satisfying the system of equations { x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3. \begin{cases} x+y+z=1 \\ x^2 + y^2 + z^2 = 2 \\ x^3 + y^3 + z^3 = 3. \end{cases} Find the total number of positive integers n > 3 n>3 such that x n + y n + z n x^n + y^n + z^n is an integer.

Infinitely many 4 2 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
May 16, 2019

From Newton's Identities we have:

p k = x k + y k + z k \large \displaystyle p_k = x^k + y^k + z^k

e 1 = x + y + z \large \displaystyle e_1 = x+y+z

e 2 = x y + y z + x z \large \displaystyle e_2 = xy+yz+xz

e 3 = x y z \large \displaystyle e_3 = xyz

For this case:

p 1 = 1 \color{#20A900} \boxed{ \large \displaystyle p_1 = 1}

p 2 = 2 \color{#20A900} \boxed{ \large \displaystyle p_2 = 2}

p 3 = 3 \color{#20A900} \boxed{ \large \displaystyle p_3 = 3}

Calculating e 1 e_1 , e 2 e_2 and e 3 e_3

Since e 1 = p 1 e_1 = p_1 :

e 1 = 1 \color{#20A900} \boxed{ e_1 = 1}

For e 2 e_2 :

p 1 2 = 1 = x 2 + y 2 + z 2 + 2 ( x y + y z + x z ) = 2 + 2 e 2 \large \displaystyle p_1^2 = 1 = x^2 + y^2 + z^2 +2(xy+yz+xz) = 2 + 2e_2

e 2 = 1 2 \color{#20A900} \boxed{ \large \displaystyle e_2 = -\frac12 }

And for e 3 e_3 :

p 1 e 2 = 1 2 = x y 2 + x 2 y + x z 2 + x 2 z + y z 2 + y 2 z + 3 x y z \large \displaystyle p_1 e_2 = -\frac12 = xy^2 + x^2y + xz^2 + x^2z + yz^2 + y^2z + 3xyz

p 1 e 2 = 1 2 = x y 2 + x 2 y + x z 2 + x 2 z + y z 2 + y 2 z + 3 e 3 \large \displaystyle p_1 e_2 = -\frac12 = xy^2 + x^2y + xz^2 + x^2z + yz^2 + y^2z + 3e_3

x y 2 + x 2 y + x z 2 + x 2 z + y z 2 + y 2 z = 1 2 3 e 3 \boxed{ \large \displaystyle xy^2 + x^2y + xz^2 + x^2z + yz^2 + y^2z = -\frac12 - 3e_3 }

p 1 3 = 1 = x 3 + y 3 + z 3 + 3 ( x y 2 + x 2 y + x z 2 + x 2 z + y z 2 + y 2 z ) + 6 x y z \large \displaystyle p_1^3 = 1 = x^3 + y^3 + z^3 + 3(xy^2 + x^2y + xz^2 + x^2z + yz^2 + y^2z) + 6xyz

p 1 3 = 1 = 3 + 3 ( 1 2 3 e 3 ) + 6 e 3 \large \displaystyle p_1^3 = 1 = 3 + 3 \left ( -\frac12 - 3e_3 \right ) + 6e_3

e 3 = 1 6 \color{#20A900} \boxed{ \large \displaystyle e_3 = \frac16 }

Again from Newton's identities, for k > 3 k>3 , we'll have:

p n = i = n 3 n 1 ( 1 ) n 1 + i e n i p i \large \displaystyle p_n = \sum_{i = n-3}^{n-1} (-1)^{n-1+i} e_{n-i} p_i

p n = ( 1 ) 2 n 4 p n 3 e 3 + ( 1 ) 2 n 3 p n 2 e 2 + ( 1 ) 2 n 2 p n 1 e 1 \large \displaystyle p_n = (-1)^{2n-4} p_{n-3} e_3 + (-1)^{2n-3} p_{n-2} e_2 + (-1)^{2n-2} p_{n-1} e_1

p n = 1 6 p n 1 + 1 2 p n 2 + p n 3 \large \displaystyle p_n = \frac16 p_{n-1} + \frac12 p_{n-2} + p_{n-3}

6 p n = p n 1 + 3 p n 2 + 6 p n 3 \large \displaystyle 6p_n = p_{n-1} + 3p_{n-2} + 6p_{n-3}

From this point on, we have to check whether p n 1 + 3 p n 2 + 6 p n 3 p_{n-1} + 3p_{n-2} + 6p_{n-3} produces a multiple of 6 6 , for p n p_n to be an integer. Calculating the first items:

p 4 = 25 6 \large \displaystyle p_4 = \frac{25}{6}

p 5 = 6 \large \displaystyle p_5 = 6

p 6 = 103 12 \large \displaystyle p_6 = \frac{103}{12}

p 7 = 221 18 \large \displaystyle p_7 = \frac{221}{18}

p 8 = 1265 72 \large \displaystyle p_8 = \frac{1265}{72}

From this point on each factor for 6 p n 6p_n in the aforementioned formula will always have non-integer 6 p n 3 6p_{n-3} , since the denominator of p n 3 p_{n-3} will always be greater than 6 6 . So, 6 p n 6p_n will never be an integer and, of course, will never be a multiple of 6 6 .

So it only occurs at n = 5 n=5 . The answer is, then, 1 \color{#3D99F6} \boxed{1}

I didnt quite understand the last part of dissertation

Carlos Baião - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...