Mechanics - 3

Given that:

  • the velocity of A A with respect to C C , v A C = 300 m/s v_{AC} = \text{300 m/s}\uparrow (note the direction of the velocity)
  • the velocity of B B with respect to A A , v B A = 200 m/s v_{BA} = \text{200 m/s}\downarrow .

Find the absolute velocity of A A , v A v_A .

Assumptions:

  • The strings are massless and inextensible.
  • The pulleys are massless and there is no friction in the pulley and between the string and pulley.

Try my World of Physics to solve many problems like this one.

250 m/s 250\text{ m/s} \uparrow 125 m/s 125\text{ m/s} \downarrow 125 m/s 125\text{ m/s} \uparrow 250 m/s 250\text{ m/s} \downarrow

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Moehring
Aug 11, 2018

Based on the given information, v A v C = v A C = 300 v C = v A 300 v B v A = v B A = 200 v B = v A 200 v_A - v_C = v_{AC} = 300 \implies v_C = v_A - 300\\ v_B - v_A = v_{BA} = -200 \implies v_B = v_A - 200

Now call the lower pulley P P and note that v P = v A v B v P = v B P = v C P = v P C = v P v C v_P = -v_A \\ v_B - v_P = v_{BP} = -v_{CP} = v_{PC} = v_P - v_C so that ( v A 200 ) + v A = v A ( v A 300 ) v A = 500 4 = 125 (v_A-200) + v_A = -v_A - (v_A - 300) \implies v_A = \frac{500}{4} = \boxed{125} where the direction is \uparrow because we have oriented all positive measurements to be up.

Chew-Seong Cheong
Jan 26, 2019

Let us denote \uparrow direction as + + and \downarrow direction as - . Then we have { v A C = v A v C = 300 . . . ( 1 ) v B A = v B v A = 200 . . . ( 2 ) \begin{cases} v_{AC} = v_A - v_C = 300 & ...(1) \\ v_{BA} = v_B - v_A = -200 & ...(2) \end{cases}

From ( 1 ) + ( 2 ) : v B v C = v B C = 100 (1)+(2): v_B - v_C = v_{BC} = 100 . Since, with respect to the right pulley P P , v B P = v C P v_{BP} = - v_{CP} , 2 v C P = 100 \implies -2v_{CP} = 100 or v C P = 50 v_{CP} = - 50 . We know that the velocity of the right pulley, v P = v A v_P = - v_A . Then we have:

v A C = 300 v A v C = 300 v A ( v P + v C P ) = 300 v A ( v A 50 ) = 300 2 v A = 300 50 v A = 125 m/s \begin{aligned} v_{AC} & = 300 \\ v_A - v_C & = 300 \\ v_A - (v_P + v_{CP}) & = 300 \\ v_A - (-v_A - 50) & = 300 \\ 2v_A & = 300 - 50 \\ \implies v_A & = \boxed{\text{125 m/s}\uparrow}\end{aligned}

Typos in equation (2)

Eric Roberts - 11 months ago

Log in to reply

Thanks, I have amended it.

Chew-Seong Cheong - 11 months ago
Gabriel Chacón
Apr 2, 2019

Let us refer all velocities to A A . V B A = 200 m/s V_{BA}=200 \text{ m/s} \downarrow .

Being v A C = 300 m/s v_{AC}=300 \text{ m/s} \uparrow , the veloctity of C C referred to A A is v C A = 300 m/s v_{CA}=300 \text{ m/s} \downarrow , and v A A = 0 v_{AA}=0 , of course.

The velocity of P 2 P_2 referred to A must be v P 2 A = v B A + v C A 2 = 300 m/s + 200 m/s 2 = 250 m/s v_{P_2A}=\dfrac{v_{BA}+v_{CA}}{2}=\dfrac{300 \text{ m/s} \downarrow+200 \text{ m/s} \downarrow}{2}=250 \text{ m/s} \downarrow , since B B approaches the pulley at the same speed C C receeds from it.

Likewise, the velocity of P 1 P_1 referred to A A must be v P 1 A = v A A + v P 2 A 2 = 0 + 250 m/s 2 = 125 m/s v_{P_1A}=\dfrac{v_{AA}+v_{P_2A}}{2}=\dfrac{0+250 \text{ m/s} \downarrow }{2}=125 \text{ m/s} \downarrow .

Since we know P 1 P_1 must be zero in earth's reference frame, we must add 125 m/s 125 \text{ m/s} \uparrow to all velocities:

v C = 175 m/s v_C=175 \text{ m/s} \downarrow , v B = 75 m/s v_B=75 \text{ m/s} \downarrow and v A = 125 m/s \boxed{v_A=125 \text{ m/s} \uparrow}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...