Newton's Sums, here?

Algebra Level 5

x 3 + 2 x 2 3 x 1 = 0 \large x^3 + 2x^2 - 3x - 1 = 0

If a , b & c a,b \text{ \& } c are the roots of this equation, find the value of cyc 1 a 3 \displaystyle \sum_{\text{cyc}} \dfrac{1}{a^3} .


Note:

cyc \displaystyle \sum_{\text{cyc}} denotes cyclic summation.


The answer is -42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Aug 17, 2015

Using Vieta's formulas, we have:

{ a + b + c = 2 a b + b c + c a = 3 a b c = 1 \begin{cases} a + b + c = -2 \\ ab + bc +ca = -3 \\ abc = 1 \end{cases}

{ 1 a + 1 b + 1 c = a b + b c + c a a b c = 3 1 a b + 1 b c + 1 c a = a + b + c a b c = 2 1 a b c = 1 \Rightarrow \begin{cases} \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \dfrac {ab + bc +ca}{abc} = -3 \\ \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca} = \dfrac {a + b +c}{abc} = -2 \\ \dfrac{1}{abc} = 1 \end{cases}

c y c 1 a 3 = 1 a 3 + 1 b 3 + 1 c 3 = ( 1 a + 1 b + 1 c ) ( 1 a 2 + 1 b 2 + 1 c 2 ) ( 1 a b + 1 b c + 1 c a ) ( 1 a + 1 b + 1 c ) + 3 ( 1 a b c ) = ( 1 a + 1 b + 1 c ) ( [ 1 a + 1 b + 1 c ] 2 2 [ 1 a b + 1 b c + 1 c a ] ) ( 1 a b + 1 b c + 1 c a ) ( 1 a + 1 b + 1 c ) + 3 ( 1 a b c ) = ( 1 a + 1 b + 1 c ) 3 3 ( 1 a b + 1 b c + 1 c a ) ( 1 a + 1 b + 1 c ) + 3 ( 1 a b c ) = ( 3 ) 3 3 ( 2 ) ( 3 ) + 3 ( 1 ) = 27 18 + 3 = 42 \begin{aligned} \sum_{cyc} \frac{1}{a^3} & = \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} \\ & = \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right) \left( \dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} \right) \\ & \quad - \left( \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca} \right) \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right) + 3 \left( \dfrac{1}{abc} \right) \\ & = \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right) \left( \left[\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right]^2 - 2\left[ \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca}\right] \right) \\ & \quad - \left( \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca} \right) \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right) + 3 \left( \dfrac{1}{abc} \right) \\ & = \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right)^3 - 3 \left( \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca} \right) \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \right) + 3 \left( \dfrac{1}{abc} \right) \\ & = (-3)^3 - 3(-2)(-3) + 3(1) = -27 - 18 + 3 = \boxed{-42} \end{aligned}

Moderator note:

Do you see how these expressions for \frac{1}{a}, \frac{1}{b}, \frac{1}[c} are still motivated from Newton's identities?

Exactly what I used :)

Mehul Arora - 5 years, 10 months ago

Did it the same way

Shreyash Rai - 5 years, 6 months ago

i did it by puting the values of a,b,c in the given equation then adding ths all and getting the value of the expression to find !

A Former Brilliant Member - 4 years, 4 months ago

Let us consider the transformation, x = 1 y x = \dfrac{1}{y} .

1 y 3 + 2 y 2 3 y 1 = 0 \dfrac{1}{y^3} + \dfrac{2}{y^2} - \dfrac{3}{y} - 1 = 0

y 3 + 3 y 2 2 y 1 = 0 \Rightarrow y^3 + 3y^2 - 2y - 1 = 0

Let the roots of this equation be d , e , & f d , e , \text{ \& } f .

S = cyc 1 a 3 = d 3 + e 3 + f 3 S = \displaystyle \sum_{\text{cyc}} \dfrac{1}{a^3} = d^3 + e^3 + f^3

Defining S 1 = d + e + f S_1 = d + e + f , S 2 = d 2 + e 2 + f 2 S_2 = d^2 + e^2 + f^2 and S 3 = d 3 + e 3 + f 3 S_3 = d^3 + e^3 + f^3 ,

By Newton's Sums,

1. S 1 + 3 = 0 S 1 = 3 1.S_1 + 3 = 0 \Rightarrow S_1 = - 3

1. S 2 + 3. S 1 + 2 ( 2 ) = 0 S 2 = 13 1.S_2 + 3.S_1 + 2(-2) = 0 \Rightarrow S_2 = 13

1. S 3 + 3. S 2 + ( 2 ) . S 1 + 3 ( 1 ) = 0 S 3 = 42 1.S_3 + 3.S_2 + (-2).S_1 + 3(-1) = 0 \Rightarrow S_3 = \boxed{-42}

Hence,

S = cyc 1 a 3 = d 3 + e 3 + f 3 = S 3 = 42 S = \sum_{\text{cyc}} \dfrac{1}{a^3} = d^3 + e^3 + f^3 = S_3 = \color{#D61F06}{\boxed{-42}}


Note:

  • a . b a.b denotes multiplication.

Moderator note:

The algebraic identity a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( ( a + b + c ) 2 3 ( a b + a c + b c ) ) a^3+b^3+c^3-3abc=(a+b+c)((a+b+c)^2-3(ab+ac+bc)) come in handy for problems like this.

I agree with you challenge master.😀😀

Anurag Pandey - 4 years, 10 months ago

what is newon sum ?

A Former Brilliant Member - 4 years, 4 months ago

Given equation is :

x 3 + 2 x 2 3 x 1 = 0 1 + 2 x 3 x 2 = 1 x 3 x^3+2x^2-3x-1=0 \implies 1+\dfrac{2}{x}-\dfrac{3}{x^2}=\dfrac{1}{x^3}

Also, 1 x 2 = x + 2 3 x \dfrac{1}{x^2}=x+2-\dfrac{3}{x}

Hence ,

1 x 3 = 3 x 5 + 11 x \dfrac{1}{x^3}=-3x-5+\dfrac{11}{x}

So, the required sum is equivalent to the following :

3 ( a + b + c ) 3 ( 5 ) + 11 ( 1 a + 1 b + 1 c ) -3(a+b+c)-3(5)+11\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)

The above expression is easy to evaluate and gives answer as 42 -42

1 / a + 1 / b + 1 / c = ( 3 ) / ( 1 ) = 3. 1 / a b + 1 / b c + 1 / c a = + 2 / ( 1 ) = 2. 1 / a b c = 1 / ( 1 ) = 1. ( 1 / a + 1 / b + 1 / c ) 2 = ( 1 / a 2 + 1 / b 2 + 1 / c 2 ) + 2 ( 1 / a b + 1 / b c + 1 / c a ) , ( 1 / a 2 + 1 / b 2 + 1 / c 2 ) = 9 2 ( 2 ) = 13. 1 / a 3 + 1 / b 3 + 1 / c 3 = 3 / a b c + { 1 / a + 1 / b + 1 / c } { ( 1 / a 2 + 1 / b 2 + 1 / c 2 ) ( 1 / a b + 1 / b c + 1 / c a ) } , = 3 + { 3 } { 13 ( 2 ) } = 42 . 1/a+1/b+1/c= - (-3)/(-1)= - 3.\\ 1/ab+1/bc+1/ca=+2/(-1)= - 2.\\ 1/abc = - 1/(-1)= 1.\\ \therefore~(1/a+1/b+1/c)^2=(1/a^2+1/b^2+1/c^2)+2(1/ab+1/bc+1/ca),\\ \implies~(1/a^2+1/b^2+1/c^2)= 9-2(-2)=13.\\ 1/a^3+1/b^3+1/c^3= 3/abc+\{ 1/a+1/b+1/c\}\{(1/a^2+1/b^2+1/c^2) - (1/ab+1/bc+1/ca)\},\\ = 3 +\{-3\}\{13 - (-2)\} \\ = \Large \color{#D61F06}{ - 42}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...