Newton's Sums

Algebra Level 3

If the roots of p ( x ) = x 3 + 3 x 2 + 4 x 8 p(x) = x^3 + 3x^2 + 4x - 8 are a \color{#D61F06}{a} , b \color{#3D99F6}{b} and c \color{#69047E}{c} , what is the value of

a 2 ( 1 + a 2 ) + b 2 ( 1 + b 2 ) + c 2 ( 1 + c 2 ) ? \color{#D61F06}{a}^2 \big(1 + \color{#D61F06}{a}^2\big) + \color{#3D99F6}{b}^2 \big(1 + \color{#3D99F6}{b}^2\big) + \color{#69047E}{c}^2 \big(1 + \color{#69047E}{c}^2\big)?


The answer is -126.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Nov 27, 2014

Let S 1 = a + b + c S_1 = a+b+c , S 2 = a b + b c + c a \space S_2 = ab+bc+ca , S 3 = a b c \space S_3 = abc\space and P n = a n + b n + c n \space P_n = a^n+b^n+c^n .

Then the value,

S = a 2 ( 1 + a 2 ) + b 2 ( 1 + b 2 ) + c 2 ( 1 + c 2 ) S = a^2(1+a^2) + b^2(1+b^2) + c^2(1+c^2)

= a 2 + b 2 + c 2 + a 4 + b 4 + c 4 = P 2 + P 4 = a^2 + b^2 + c^2 + a^4 + b^4 + c^4 = P_2 + P_4

Then using Vieta's Formula - Higher Degrees , we have: S 1 = 3 S_1 = -3 , S 2 = 4 \space S_2 = 4 , S 3 = 8 \space S_3 = 8 \space . And using Newton's Identities we have:

P 1 = S 1 = 3 P_1 = S_1 = -3

P 2 = S 1 P 1 2 S 2 = ( 3 ) ( 3 ) 2 ( 4 ) = 9 8 = 1 P_2 = S_1P_1 - 2S_2 = (-3)(-3) -2(4) = 9 - 8 = 1

P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = ( 3 ) ( 1 ) ( 4 ) ( 3 ) + 3 ( 8 ) P_3 = S_1P_2 - S_2P_1 + 3S_3 = (-3)(1) -(4)(-3) + 3(8)

= 3 + 12 + 24 = 33 \quad \quad = -3+12+24 = 33

P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = ( 3 ) ( 33 ) ( 4 ) ( 1 ) + ( 8 ) ( 3 ) P_4 = S_1P_3 - S_2P_2 + S_3P_1 = (-3)(33) -(4)(1) + (8)(-3)

= 99 4 24 = 127 \quad \quad = -99-4-24 = -127

Therefore, S = P 2 + P 4 = 1 127 = 126 S = P_2 + P_4 = 1 - 127 = \boxed {-126}

Great!

P.s. All those who didn't yet understand look at this. The polynomial is the example.

Sualeh Asif - 6 years, 6 months ago

Log in to reply

Wow! I didn't even know they had used an example. I legit made up the polynomial to be agreeable with the question.

Sharky Kesa - 6 years, 6 months ago

I learnt from you this method. Thanks !!

Anurag Pandey - 4 years, 10 months ago
Shubhendra Singh
Nov 27, 2014

It could easily be identified that p ( 1 ) = 0 p(1)=0

So ( x 1 ) (x-1) is a factor of p ( x ) p(x)

p ( x ) = ( x 1 ) ( x 2 + 4 x + 8 ) p(x)=(x-1)(x^{2}+4x+8)

So other two roots will be 2 ± 2 i -2 \pm 2i

So a = 1 , b = 2 + 2 i , c = 2 2 i a=1 \ ,\ b=-2 + 2i \ ,\ c=-2 - 2i where i = 1 i= \sqrt{-1}

The given expression can be written as

2 + 8 i ( 1 8 i ) + 8 i ( 1 + 8 i ) 2 + -8i(1-8i)+8i(1+8i)

= 2 128 =2-128

So the answer is 126 \boxed{-126}

Very nice approach!

Skanda Prasad - 3 years, 8 months ago

I used rational root theorem to find the root of 1. It's probably one of the most simple theorems to use in my opinion. Then, I find the other roots using the same method you used. I honestly think it's easier to find the roots of the polynomial than to use Newton Sums, though the Newton Sums method is just as effective.

tytan le nguyen - 6 years, 6 months ago

Log in to reply

Newton's sums would be a more general method, which allows you to approach the problem even when the polynomial cannot be (easily) solved.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

In this case, I found it quicker to find the roots here. But in many other cases involving polynomials, Newton's Sums approach works the best.

tytan le nguyen - 6 years, 6 months ago

a 2 ( 1 + a 2 ) + b 2 ( 1 + b 2 ) + c 2 ( 1 + c 2 ) = ( a 2 + b 2 + c 2 ) + ( a 4 + b 4 + c 4 ) \color{#69047E}{a^2(1+a^2)+b^2(1+b^2)+c^2(1+c^2)=(a^2+b^2+c^2)+(a^4+b^4+c^4)} Define the following sums: { P 1 = a + b + c P 2 = a 2 + b 2 + c 2 P 3 = a 3 + b 3 + c 3 P 4 = a 4 + b 4 + c 4 \color{#3D99F6}{\begin{cases}P_1=a+b+c\\P_2=a^2+b^2+c^2\\P_3=a^3+b^3+c^3\\P_4=a^4+b^4+c^4\end{cases}} Newton's sums tell us that: { P 1 + 3 = 0 P 2 + 3 P 1 + 8 = 0 P 3 + 3 P 2 + 4 P 1 24 = 0 P 4 + 3 P 3 + 4 P 2 8 P 1 = 0 \color{#20A900}{\begin{cases}P_1+3=0\\ P_2+3P_1+8=0 \\ P_3+3P_2+4P_1-24=0 \\ P_4+3P_3+4P_2-8P_1=0 \end{cases}} Solving this system of equations,we get P 1 = 3 , P 2 = 1 , P 3 = 33 , P 4 = 127 \color{#D61F06}{P_1=-3,P_2=1,P_3=33,P_4=-127} .Out of these, P 2 a n d P 4 \color{#D61F06}{P_2\;and\;P_4} are the ones we need.So ( a 2 + b 2 + c 2 ) + ( a 4 + b 4 + c 4 ) = P 2 + P 4 = 1 + ( 127 ) = 1 127 = 126 \color{#EC7300}{(a^2+b^2+c^2)+(a^4+b^4+c^4)=P_2+P_4=1+(-127)=1-127=\boxed{-126}}

Skanda Prasad
Oct 2, 2017

Please note that the expression in the question can also be written as a 4 + b 4 + c 4 + a 2 + b 2 + c 2 \color{#3D99F6}a^4+b^4+c^4+a^2+b^2+c^2

Let's begin!

If a , b , c a,b,c are the roots, then

a 3 + 3 a 2 + 4 a 8 = 0 a^3+3a^2+4a-8=0 ... ( i ) (i)

b 3 + 3 b 2 + 4 b 8 = 0 b^3+3b^2+4b-8=0 ... ( i i ) (ii)

c 3 + 3 c 2 + 4 c 8 = 0 c^3+3c^2+4c-8=0 ... ( i i i ) (iii)

Multipying a a to ( i ) (i) , b b to ( i i ) (ii) and c c to ( i i i ) (iii) , we get

a 4 + 3 a 3 + 4 a 2 8 a \color{#3D99F6}a^4+\color{#D61F06}3a^3+\color{#3D99F6}4a^2-\color{#D61F06}8a = 0 =0

b 4 + 3 b 3 + 4 b 2 8 a \color{#3D99F6}b^4+\color{#D61F06}3b^3+\color{#3D99F6}4b^2-\color{#D61F06}8a = 0 =0

c 4 + 3 c 3 + 4 c 2 8 a \color{#3D99F6}c^4+\color{#D61F06}3c^3+\color{#3D99F6}4c^2-\color{#D61F06}8a = 0 =0

Adding the above equations, we get

a 4 + b 4 + c 4 + 3 ( a 3 + b 3 + c 3 ) + 4 ( a 2 + b 2 + c 2 ) 8 ( a + b + c ) \color{#3D99F6}a^4+b^4+c^4+\color{#D61F06}3(a^3+b^3+c^3)+\color{#3D99F6}4(a^2+b^2+c^2)\color{#D61F06}-8(a+b+c) = 0 =0 .

\implies ( a 4 + b 4 + c 4 + a 2 + b 2 + c 2 ) + 3 ( a 3 + b 3 + c 3 ) + 3 ( a 2 + b 2 + c 2 ) 8 ( a + b + c ) \color{#3D99F6}{(a^4+b^4+c^4+a^2+b^2+c^2)}+\color{#D61F06}3(a^3+b^3+c^3)+\color{#3D99F6}3(a^2+b^2+c^2)\color{#D61F06}-8(a+b+c) = 0 =0 .

\implies ( a 4 + b 4 + c 4 + a 2 + b 2 + c 2 ) = 3 ( a 3 + b 3 + c 3 ) 3 ( a 2 + b 2 + c 2 ) + 8 ( a + b + c ) \color{#3D99F6}(a^4+b^4+c^4+a^2+b^2+c^2)=\color{#D61F06}-3(a^3+b^3+c^3)\color{#3D99F6}-3(a^2+b^2+c^2)\color{#D61F06}+8(a+b+c)

Hence, we have arrived at an equation for the required expression. All we need to do is to plug in the values of ( a 3 + b 3 + c 3 ) \color{#D61F06}(a^3+b^3+c^3) , ( a 2 + b 2 + c 2 ) \color{#3D99F6}(a^2+b^2+c^2) and ( a + b + c ) \color{#D61F06}(a+b+c) .

By Vieta's Formula we have

a + b + c \color{#D61F06}a+b+c = 3 =-3

a b + b c + a c = 4 ab+bc+ac=4

a b c = 8 abc=8

Let's find the values of the unknowns...

Firstly,

a 2 + b 2 + c 2 \color{#3D99F6}a^2+b^2+c^2 = ( a + b + c ) 2 2 ( a b + b c + a c ) =(a+b+c)^2 -2(ab+bc+ac)

a 2 + b 2 + c 2 = \color{#3D99F6}a^2+b^2+c^2= ( 3 ) 2 2 ( 4 ) = 1 (-3)^2 -2(4)=\color{#3D99F6}1

Secondly we have,

a 3 + b 3 + c 3 \color{#D61F06}a^3+b^3+c^3 = ( a + b + c ) [ a 2 + b 2 + c 2 ( a b + b c + a c ) ] + 3 a b c =(a+b+c)[a^2+b^2+c^2-(ab+bc+ac)]+3abc

a 3 + b 3 + c 3 \color{#D61F06}a^3+b^3+c^3 = ( 3 ) [ 1 4 ] + 3 ( 8 ) = 33 =(-3)[1-4]+3(8)=\color{#D61F06}33

Therefore,

( a 4 + b 4 + c 4 + a 2 + b 2 + c 2 ) \color{#3D99F6}(a^4+b^4+c^4+a^2+b^2+c^2) = 3 ( 33 ) 3 ( 1 ) + 8 ( 3 ) = 126 =\color{#D61F06}-3(33)-\color{#3D99F6}3(1)+\color{#D61F06}8(-3)=\color{#69047E}\boxed{-126} .

Kosaksi Sriram
Oct 28, 2015

apply Vieta's formulas

a^2(1 + a^2) + b^2(1 + b^2) + c^2(1 + c^2)

= a^2 + b^2 + c^2 + a^4 + b^4 + c^4

a, b, and c are roots

We'll use these values later in the other equations

a + b + c = -3 (second numerical coefficient over the leading coefficient)

abc = 8 (last numerical coefficient over the leading coefficient)

ab + ac + bc = 4 (third numerical coefficient over the leading coefficient)

(a + b + c)^2 = (-3)^2 = 9

(a + b + c)^2 = 9

=> a^2 + b^2 + c^2 + 2(ab + ac + bc) = 9

=> a^2 + b^2 + c^2 + 2(4) = 9

=> a^2 + b^2 + c^2 = 1 <--- will be used on the main problem

(ab + ac + bc)^2 = (4)^2 = 16

(ab + ac + bc)^2 = 16

=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 16

=> a^2b^2 + a^2c^2 + b^2c^2 + 2(8)(-3) = 16

=> a^2b^2 + a^2c^2 + b^2c^2 - 48 = 16

=> a^2b^2 + a^2c^2 + b^2c^2 = 64 <-- will be used in the next equation

(a^2 + b^2 + c^2)^2 = (1)^2 = 1

(a^2 + b^2 + c^2)^2 = 1

=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2)=1

=> a^4 + b^4 + c^4 + 2(64) = 1

=> a^4 + b^4 + c^4 = -127 <-- will be used on the main problem

going back to the main problem:

find the value of

a^2 + b^2 + c^2 + a^4 + b^4 + c^4

simply just substitute:

a^2 + b^2 + c^2 = 1

a^4 + b^4 + c^4 = -127

therefore

a^2 + b^2 + c^2 + a^4 + b^4 + c^4

= 1 -127

= -126

Jason Hughes
Jan 8, 2015

Notice x=1 is a solution so factor x^3+3x^2+4x-8 to (x-1)(x^2+4x+8). let a=1 and the roots of x^2+4x+8 be b and c. (x-b)(x-c)= x^2+4x+8. so bc=8 and b+c=-4. expand and simplify a^2(1+a^2) + b^2(1+b^2) +c^2(1+c^2) with a=1. so then we have 2+b^2+c^2+c^4+b^4. solve for a^2+b^2 with b+c=-4 and bc=8 (b+c)^2=b^2+c^2+2*bc. plug in value of bc and b+c. so (-4)^2=b^2+c^2+2(8). Then b^2+c^2=0. Then solve for b^4+c^4. (b^2+c^2)^2 =b^4+c^4+ 2(bc)^2. 0^2 =b^4+c^4+2(8)^2 so b^4+c^4=-128. So the value we want is 2+0-128 =-126

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...