Ngle

Geometry Level 2

45° 75° 50° 60° 30°

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Zico Quintina
May 3, 2018

Let O E = r OE = r . Then O D = O A = 2 r OD = OA = 2r , so E D = 3 r ED =\sqrt{3}r . Also E B = 3 r EB=3r . Thus Δ E D B \Delta EDB is a 1 2 3 1-2-\sqrt{3} right triangle, so B D E = 6 0 \angle BDE = 60^{\circ} .

David Vreken
Jun 14, 2018

Draw segment O D OD . As a radius of circle with center O O , O D = O A = O B OD = OA = OB .

Since E E is the center of O A OA , and since O A = O D OA = OD , O E = 1 2 O D OE = \frac{1}{2}OD , which means in right O E D \triangle OED E O D = 60 ° \angle EOD = 60° and O D E = 30 ° \angle ODE = 30° .

Since E O D = 60 ° \angle EOD = 60° , D O B = 180 ° 60 ° = 120 ° \angle DOB = 180° - 60° = 120° . Since B O D \triangle BOD is an isosceles triangle with a vertex angle D O B = 120 ° \angle DOB = 120° , its base angle O D B = 1 2 ( 180 ° 120 ° ) = 30 ° \angle ODB = \frac{1}{2}(180° - 120°) = 30° .

Since O D E = 30 ° \angle ODE = 30° and O D B = 30 ° \angle ODB = 30° , B D E = 30 ° + 30 ° = 60 ° \angle BDE = 30° + 30° = \boxed{60°} .

Ricky Thegreat
Jul 11, 2018

AE=EO=r OD=2r DE=3^(1/2)r BE=3r Tan D = BE/DE=3r/((3^(1/2)r)=3^(1/2) D=60°

A O D i s a n e q u i l a t e r a l t r i a n g l e O A D = 60 ° A D B = 90 ° ( T h a l e s ) D B E = 30 ° B D E = 60 ° AOD \mathrm{ \ is \ an \ equilateral \ triangle} \Rightarrow \angle OAD = 60 \degree \\ \angle ADB = 90 \degree (Thales) \Rightarrow \angle DBE = 30 \degree \Rightarrow \angle BDE = 60 \degree

Note that A E D O E D \bigtriangleup AED \cong \bigtriangleup OED (SAS criteria), therefore A O D \bigtriangleup AOD is equilateral and, as a consequence: E A D = 6 0 B D E = 6 0 \angle EAD = 60^{\circ} \Rightarrow \angle BDE = 60^{\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...