Nice!

Algebra Level 3

n = 0 9 n + 2 4 n + 1 = A B \displaystyle \sum^{\infty}_{n=0}9^{-n+2}4^{n+1}=\frac{A}{B}

Find A + B A+B where A A and B B are positive co-prime integers.


The answer is 2921.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 27, 2015

n = 0 9 n + 2 4 n + 1 = n = 0 ( 9 2 ) ( 4 1 ) 9 n 4 n = 324 n = 0 ( 4 9 ) n = 324 1 4 9 = 2916 5 \begin{aligned} \sum^\infty_{n=0} 9^{-n+2}4^{n+1} & = \sum^\infty_{n=0} (9^2)(4^1)9^{-n}4^{n} \\ & = 324 \sum^\infty_{n=0} \left(\frac{4}{9}\right)^n \\ & = \frac{324}{1-\frac{4}{9}} \\ & = \frac{2916}{5} \end{aligned}

A + B = 2916 + 5 = 2921 \Rightarrow A+B = 2916+5 = \boxed{2921}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...