Nice and Simple (edited)

Algebra Level 4

( 2 + 3 ) x + ( 2 3 ) x = 4 \large \sqrt { { (2+\sqrt { 3 } ) }^{ x } } +\sqrt { { (2-\sqrt { 3 } ) }^{ x } } =4

Find the sum of values of x x that satisfy the equation above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akhil Bansal
Oct 6, 2015

( 2 + 3 ) x + ( 2 3 ) x = 4 \sqrt{(2 + \sqrt3)^x} +\sqrt{(2 - \sqrt3)^x} = 4 Observe that if y = ( 2 + 3 ) x . . . 1 \Rightarrow y = \sqrt{(2 + \sqrt3)^x} \quad ...\color{#3D99F6}{1} 1 y = ( 2 3 ) x . . . 2 \Rightarrow \dfrac{1}{y} = \sqrt{(2 - \sqrt3)^x} \quad ...\color{#D61F06}{2} y + 1 y = 4 \Rightarrow y + \dfrac{1}{y} = 4 y 2 4 y + 1 = 0 \Rightarrow y^2 - 4y + 1 = 0 Using Quadratic formula,
y = 2 ± 3 . . 3 \Rightarrow y = 2 \pm \sqrt3 \quad\quad ..\color{#20A900}{3} Comparing values of y, ( 2 + 3 ) = ( 2 + 3 ) x \Rightarrow (2 + \sqrt3) = \sqrt{(2 + \sqrt3)^x} ( 2 3 ) 1 = ( 2 3 ) x \Rightarrow (2 - \sqrt3)^{-1} = \sqrt{(2 - \sqrt3)^x} Bases are same, equating power x 2 = 1 ; x 2 = 1 \Rightarrow \dfrac{x}{2} = 1 \ \ ; \ \ \dfrac{x}{2} = -1 x = ± 2 \boxed{x = \pm 2 }

Exactly Same Way.

Kushagra Sahni - 5 years, 8 months ago

How do you get the value of 1/y?

Basim Khajwal - 4 years, 6 months ago

Short and sweet.

Ponhvoan Srey - 5 years, 8 months ago
Alex Burgess
Jan 25, 2019

Observe that ( 2 + 3 ) = 1 ( 2 3 ) (2+\sqrt{3}) = \frac{1}{(2-\sqrt{3})} .

So, ( 2 + 3 ) x = ( 2 3 ) x \sqrt{(2+\sqrt{3})^{-x}} = \sqrt{(2-\sqrt{3})^{x}} .

And if y y is a solution, so is y -y . Hence the sum of solutions is 0 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...