Nice derivative

Calculus Level pending

If x y = e x y x^y=e^{x-y} , then what is the value of d y d x ? \frac{dy}{dx} ?

ln x ( 1 + ln x ) 2 \frac{\ln x}{(1+\ln x)^2} ln x ( 1 + ln x ) \frac{\ln x}{(1+\ln x)} x ( 1 + ln x ) 2 \frac{x}{(1+\ln x)^2} ln x ( 1 ln x ) 2 \frac{\ln x}{(1-\ln x)^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Mar 23, 2017

x y = e x y \large x^y=e^{x-y}

Take logarithms base e e on both sides:

Therefore y ln x = ln ( e x y ) \large y \ln x = \ln(e^{x-y})

y ln x = x y \large \implies y \ln x= x-y

y ( 1 + ln x ) = x \large \implies y(1+\ln x) = x

y = x 1 + ln x \large y = \frac{x}{1+\ln x}

This differentiated using the quotient rule: 1 + ln x 1 x ( x ) ( 1 + ln x ) 2 = ln x ( 1 + ln x ) 2 \large\frac{1 + \ln x - \frac{1}{x}( x)}{(1+\ln x)^2} = \boxed{ \frac {\ln x}{(1+\ln x)^2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...