Nice inequality

Algebra Level 3

If a a and b b are positive reals such that a + b = 1 a+b=1 , find the maximum of

4 a + 1 \sqrt{4a+1} + 4 b + 1 \sqrt{4b+1}

Give your answer as 3 digits after decimal


The answer is 3.464.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let x 1 = 4 a + 1 \large x_1=\sqrt{4a+1}

and x 2 = 4 b + 1 \large x_2=\sqrt{4b+1}

Then by using R M S A M \large RMS\geq AM inequality on x 1 \large x_1 and x 2 \large x_2 ,

we get x 1 2 + x 2 2 2 x 1 + x 2 2 \large \sqrt{\frac{x_1^2+x_2^2}{2}}\geq \frac{x_1+x_2}{2}

So, 4 a + 1 + 4 b + 1 2 4 a + 1 + 4 b + 1 2 \large \sqrt{\frac{4a+1+4b+1}{2}}\geq \frac{\sqrt{4a+1}+\sqrt{4b+1}}{2}

4 ( a + b ) + 2 2 4 a + 1 + 4 b + 1 2 \large \Rightarrow \sqrt{\frac{4(a+b)+2}{2}}\geq \frac{\sqrt{4a+1}+\sqrt{4b+1}}{2}

Since a + b = 1 \large a+b=1 ,

4 + 2 2 4 a + 1 + 4 b + 1 2 \large \Rightarrow \sqrt{\frac{4+2}{2}}\geq \frac{\sqrt{4a+1}+\sqrt{4b+1}}{2}

3 4 a + 1 + 4 b + 1 2 \large \Rightarrow \sqrt{3}\geq \frac{\sqrt{4a+1}+\sqrt{4b+1}}{2}

2 × 3 4 a + 1 + 4 b + 1 \large \Rightarrow 2\times\sqrt{3}\geq \sqrt{4a+1}+\sqrt{4b+1}

So the maximum value of 4 a + 1 + 4 b + 1 \large \sqrt{4a+1}+\sqrt{4b+1} is equal to 2 3 \large 2\sqrt{3} 3.464 \large \approx \boxed{3.464}

Pre college?

Md Zuhair - 3 years, 4 months ago

Log in to reply

I didn't get what you want to ask

Shreyansh Mukhopadhyay - 3 years, 3 months ago
Utkarsh Kumar
Jan 23, 2018

Relevant Wiki : Cauchy Schwartz Inequality

Let a 1 = 4 a + 1 a_{1} = \sqrt{4a+1} a 2 = 4 b + 1 a_{2} = \sqrt{4b+1} b 1 = 1 b_{1} = 1 b 2 = 1 b_{2} = 1

Then by Cauchy schwarz inequality,

( 4 a + 1 2 + 4 b + 1 2 ) ( 1 2 + 1 2 ) ( 4 a + 1 × 1 + 4 b + 1 × 1 ) (\sqrt{4a+1}^2 + \sqrt{4b+1}^2) \cdot (1^2+1^2) \geq (\sqrt{4a+1} \times 1 + \sqrt{4b+1} \times 1)

( 4 ( a + b ) + 2 ) 2 ( 4 a + 1 + 4 b + 1 ) 2 (4(a+b)+2) \cdot 2 \geq (\sqrt{4a+1} + \sqrt{4b+1})^2

( 4 a + 1 + 4 b + 1 ) ( 12 ) (\sqrt{4a+1} + \sqrt{4b+1}) \leq (\sqrt{12})

2 3 \leq 2\sqrt{3}

3.464 \approx \boxed{3.464}

f ( a , b ) = 4 a + 1 + 4 b + 1 = 4 a + 1 + 5 4 a f = 1 / 2 4 4 a + 1 1 / 2 4 5 4 a = 0 f o r e x t r i m u m . S o 4 a + 1 = 5 4 a . 4 a + 1 = 5 4 a . S o a = 1 / 2 , a n d b = 1 / 2. S o f ( 1 / 2 , 1 / 2 ) = 2 4 1 / 2 + 1 = 2 3 = 3.464. I f a = 0 , b = 1 , f = 1 + 5 = 2.236 < 3.464 , s o 3.464 i s f m a x . o r S i n c e i t i s s y m m e t r i c a l f u n c t i o n e t r i m u m a t a = b . a = b = 1 / 2. S o f ( 1 / 2 , 1 / 2 ) = 2 4 1 / 2 + 1 = 2 3 = 3.464. f(a,b)=\sqrt{4a+1}+\sqrt{4b+1}=\sqrt{4a+1}+\sqrt{5-4a}\\ \therefore~f'=\dfrac{1/2*4}{\sqrt{4a+1}} - \dfrac{1/2*4}{\sqrt{5-4a}}=0~for~extrimum.\\ So~\sqrt{4a+1}=\sqrt{5-4a}.~~\implies~ 4a+1=5-4a.\\ So~a=1/2,~and~b=1/2.\\ So~f(1/2,1/2)=2*\sqrt{4*1/2+1}=2*\sqrt3=3.464.\\ Ifa=0,~b=1,~~f=1+\sqrt5=2.236<3.464,~~~so~3.464~is~f_{max}.\\ or\\ Since~it~ is~symmetrical~function~etrimum~at~a=b.~\therefore~a=b=1/2.\\ So~f(1/2,1/2)=2*\sqrt{4*1/2+1}=2*\sqrt3=3.464.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...