If a and b are positive reals such that a + b = 1 , find the maximum of
4 a + 1 + 4 b + 1
Give your answer as 3 digits after decimal
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Pre college?
Relevant Wiki : Cauchy Schwartz Inequality
Let a 1 = 4 a + 1 a 2 = 4 b + 1 b 1 = 1 b 2 = 1
Then by Cauchy schwarz inequality,
( 4 a + 1 2 + 4 b + 1 2 ) ⋅ ( 1 2 + 1 2 ) ≥ ( 4 a + 1 × 1 + 4 b + 1 × 1 )
( 4 ( a + b ) + 2 ) ⋅ 2 ≥ ( 4 a + 1 + 4 b + 1 ) 2
( 4 a + 1 + 4 b + 1 ) ≤ ( 1 2 )
≤ 2 3
≈ 3 . 4 6 4
f ( a , b ) = 4 a + 1 + 4 b + 1 = 4 a + 1 + 5 − 4 a ∴ f ′ = 4 a + 1 1 / 2 ∗ 4 − 5 − 4 a 1 / 2 ∗ 4 = 0 f o r e x t r i m u m . S o 4 a + 1 = 5 − 4 a . ⟹ 4 a + 1 = 5 − 4 a . S o a = 1 / 2 , a n d b = 1 / 2 . S o f ( 1 / 2 , 1 / 2 ) = 2 ∗ 4 ∗ 1 / 2 + 1 = 2 ∗ 3 = 3 . 4 6 4 . I f a = 0 , b = 1 , f = 1 + 5 = 2 . 2 3 6 < 3 . 4 6 4 , s o 3 . 4 6 4 i s f m a x . o r S i n c e i t i s s y m m e t r i c a l f u n c t i o n e t r i m u m a t a = b . ∴ a = b = 1 / 2 . S o f ( 1 / 2 , 1 / 2 ) = 2 ∗ 4 ∗ 1 / 2 + 1 = 2 ∗ 3 = 3 . 4 6 4 .
Problem Loading...
Note Loading...
Set Loading...
Let x 1 = 4 a + 1
and x 2 = 4 b + 1
Then by using R M S ≥ A M inequality on x 1 and x 2 ,
we get 2 x 1 2 + x 2 2 ≥ 2 x 1 + x 2
So, 2 4 a + 1 + 4 b + 1 ≥ 2 4 a + 1 + 4 b + 1
⇒ 2 4 ( a + b ) + 2 ≥ 2 4 a + 1 + 4 b + 1
Since a + b = 1 ,
⇒ 2 4 + 2 ≥ 2 4 a + 1 + 4 b + 1
⇒ 3 ≥ 2 4 a + 1 + 4 b + 1
⇒ 2 × 3 ≥ 4 a + 1 + 4 b + 1
So the maximum value of 4 a + 1 + 4 b + 1 is equal to 2 3 ≈ 3 . 4 6 4