A Nice Integral (3)

Calculus Level 3

Evaluate the following integral 0 π x sin x 1 + cos 2 x d x \large \int_{0}^{\pi} \frac{x \sin x}{1+\cos^2 x} \, dx

π 4 \frac{\pi}{4} π 2 2 \frac{\pi^2}{2} π 3 \frac{\pi}{3} π 2 4 \frac{\pi^2}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 11, 2016

I = 0 π x sin x 1 + cos 2 x d x Using the identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π x sin x 1 + cos 2 x + ( π x ) sin ( π x ) 1 + cos 2 ( π x ) d x = 1 2 0 π x sin x 1 + cos 2 x + ( π x ) sin x 1 + cos 2 x d x = 1 2 0 π π sin x 1 + cos 2 x d x Let u = cos x d u = sin x d x = 1 2 1 1 π 1 + u 2 d u = π tan 1 u 2 1 1 = π 2 4 \begin{aligned} I & = \int_0^\pi \frac {x\sin x}{1+\cos^2 x}dx \quad \quad \small \color{#3D99F6}{\text{Using the identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\pi \frac {x\sin x}{1+\cos^2 x} + \frac {(\pi-x)\sin (\pi-x)}{1+\cos^2 (\pi-x)} \ dx \\ & = \frac 12 \int_0^\pi \frac {x\sin x}{1+\cos^2 x} + \frac {(\pi-x)\sin x}{1+\cos^2 x} \ dx \\ & = \frac 12 \int_0^\pi \frac {\pi \sin x}{1+\cos^2 x} dx \quad \quad \small \color{#3D99F6}{\text{Let }u = \cos x \implies du = - \sin x \ dx} \\ & = \frac 12 \int_{-1}^1 \frac \pi{1+u^2} du \\ & = \frac {\pi \tan^{-1} u}2\bigg|_{-1}^1 \\ & = \boxed{\dfrac {\pi^2} 4} \end{aligned}

Thank you for the nice solution.

Hana Wehbi - 4 years, 10 months ago

It should be π × tan 1 u 2 1 1 = π 2 4 \pi \times \dfrac{\tan^{-1} u}{2} \bigg|_{-1}^{1} = \dfrac{\pi^2}{4} .

Tapas Mazumdar - 4 years, 3 months ago

Log in to reply

Thanks. I got it changed.

Chew-Seong Cheong - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...