A Nice Integral (5)

Calculus Level 3

The value of the integral 0 1 e x 2 d x = A + E \large \int_{0}^{1} e^{x^2} dx = A + E

where E E is the maximum error and is less than 0.0021 0.0021 . What is the value of A ? A?

1.623 1.126 1.324 1.462

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 11, 2016

I = 0 1 e x 2 d x By Maclaurin series = 0 1 n = 0 x 2 n n ! d x = n = 0 0 1 x 2 n n ! d x = n = 0 x 2 n + 1 n ! ( 2 n + 1 ) 0 1 = n = 0 1 n ! ( 2 n + 1 ) = 1 + 1 3 + 1 10 + 1 42 + 1 216 + 1 1320 + . . . Terms < 0.0007575 1.462 \begin{aligned} I & = \int_0^1 \color{#3D99F6}{e^{x^2}} dx & \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \int_0^1 \color{#3D99F6} {\sum_{n=0}^\infty \frac {x^{2n}}{n!}} dx \\ & = \sum_{n=0}^\infty \int_0^1 \frac {x^{2n}}{n!} dx \\ & = \sum_{n=0}^\infty \frac {x^{2n+1}}{n!(2n+1)} \bigg|_0^1 \\ & = \sum_{n=0}^\infty \frac 1{n!(2n+1)} \\ & = 1 + \frac 13 + \frac 1{10} + \frac 1{42} + \frac 1{216} + \color{#3D99F6}{\frac 1{1320} + ...} & \small \color{#3D99F6}{\text{Terms }< 0.0007575} \\ & \approx \boxed{1.462} \end{aligned}

So nice. I have solved it slightly different. I will write my solution later on.

Hana Wehbi - 4 years, 10 months ago
Hana Wehbi
Aug 13, 2016

I am going to evaluate 0 1 e x 2 d x \int_{0}^{1} e^{x^2} dx by using T a y l o r s t h e o r e m \color{#D61F06}{Taylor's \ theorem} of the mean:

e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 e ξ 5 ! \large e^x = 1 + x + \frac{ x^2}{2!}+ \frac{x^3}{3!}+ \frac{ x^4}{4!}+ \frac{x^5 e^\xi}{5!} ; where ( 0 < ξ < x ) (0< \xi <x)

Then replacing x x by x 2 \color{#3D99F6}{x^2} we obtain:

e x 2 = 1 + x 2 + x 4 2 ! + x 6 3 ! + x 8 4 ! + x 10 e ξ 5 ! \large e^{x^2} = 1 +\color{#3D99F6}{ x^2} + \frac{ \color{#3D99F6}{x^4}}{2!}+ \frac{\color{#3D99F6}{x^6}}{3!}+ \frac{ \color{#3D99F6}{x^8}}{4!}+ \frac{\color{#3D99F6}{x^{10}} e^\xi}{5!} ; where ( 0 < ξ < x ) (0< \xi <x)

Integrating from 0 0 to 1 1 :

0 1 = 0 1 ( 1 + x 2 + x 4 2 ! + x 6 3 ! + x 8 4 ! ) d x + E \large\int_{0}^{1}= \int_{0}^{1} (1 + x^2 + \frac{ x^4}{2!}+ \frac{x^6}{3!}+ \frac{ x^8}{4!})dx+ E , where E = 0 1 x 10 e ξ 5 ! d x \large E= \int_{0}^{1} \frac{x^{10} e^\xi}{5!} dx , E \large E denotes the maximum error.

= 1 + 1 3 + 1 5.2 ! + 1 7.3 ! + 1 9.4 ! + E = 1.4618 + E \large= 1 + \frac{1}{3} + \frac{1}{5.2!} + \frac{1}{7.3!}+ \frac{1}{9.4!} + E = 1.4618 + E ;

Now E = 0 1 x 10 e ξ 5 ! d x 0 1 x 10 e ξ 5 ! d x e 0 1 x 10 5 ! d x = e 11.5 ! < 0.0021 \large |E|= |\int_{0}^{1} \frac{x^{10} e^\xi}{5!} dx| \le |\int_{0}^{1} \frac{x^{10} e^\xi}{5!}| dx \le e\int_{0}^{1} \frac{x^{10}}{5!} dx = \frac{e}{11.5!} < 0.0021

Thus the maximum error is less than 0.0021 0.0021 , and so the value of the integral is 1.46 1.46 accurate to two decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...