A Nice Integral (4)

Calculus Level 3

Evaluate 0 π / 2 sin x sin x + cos x d x \large \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} \, dx

π 4 \frac{\pi}{4} π \pi π 2 \frac{\pi}{2} 2 π 2\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 11, 2016

I = 0 π 2 sin x sin x + cos x d x Using the identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 ( 0 π 2 sin x sin x + cos x d x + 0 π 2 sin ( π 2 x ) sin ( π 2 x ) + cos ( π 2 x ) d x ) = 1 2 ( 0 π 2 sin x sin x + cos x d x + 0 π 2 cos x cos x + sin x d x ) = 1 2 0 π 2 sin x + cos x sin x + cos x d x = 1 2 0 π 2 d x = x 2 0 π 2 = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx \quad \quad \small \color{#3D99F6}{\text{Using the identity }\int_a^b f(x) \ dx = \int_a^b f(a+b - x) \ dx} \\ & = \frac 12 \left(\int_0^\frac \pi 2 \frac {\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx + \int_0^\frac \pi 2 \frac {\sqrt{\sin \left(\frac \pi 2 - x\right)}}{\sqrt{\sin \left(\frac \pi 2 - x\right)}+\sqrt{\cos \left(\frac \pi 2 - x\right)}} dx \right) \\ & = \frac 12 \left(\int_0^\frac \pi 2 \frac {\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx + \int_0^\frac \pi 2 \frac {\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} dx \right) \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx \\ & = \frac 12 \int_0^\frac \pi 2 dx \\ & = \frac x2 \bigg|_0^\frac \pi 2 = \boxed{\dfrac \pi 4}\end{aligned}

Nice solution as usual, got my vote.

Hana Wehbi - 4 years, 10 months ago

Log in to reply

Thanks. I have edited your problem. Because sin \sin is a function, it should have a "\" in front in LaTex just like "sqrt" for \sqrt{} . But you need to leave a space before you enter x x . Functions should not be in italic like tan , cos , ln , gcd \tan, \cos, \ln, \gcd all with "\" in front. Italic is for variable and constant such as x , y , z , a , b , c x, y, z, a, b, c .

Chew-Seong Cheong - 4 years, 10 months ago

Log in to reply

Thank you.

Hana Wehbi - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...