Nice number

Algebra Level 3

If

x = 1 2 ( 7 3 1 7 3 ) , x=\frac{1}{2}\left(\sqrt[3]{7}-\frac{1}{\sqrt[3]{7}}\right),

find the value of

( x + 1 + x 2 ) 3 . (x+\sqrt{1+x^2})^3.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First we have that x 2 = 1 4 ( 7 2 3 2 + 7 2 3 ) x^{2} = \frac{1}{4} (7^{\frac{2}{3}} - 2 + 7^{-\frac{2}{3}}) .

So 1 + x 2 = 1 4 ( 7 2 3 + 2 + 7 2 3 ) = [ 1 2 ( 7 1 3 + 7 1 3 ) ] 2 1 + x^{2} = \frac{1}{4} (7^{\frac{2}{3}} + 2 + 7^{-\frac{2}{3}}) = [\frac{1}{2} (7^{\frac{1}{3}} + 7^{-\frac{1}{3}})]^{2} .

Thus x + 1 + x 2 = 1 2 ( 7 1 3 7 1 3 ) + 1 2 ( 7 1 3 + 7 1 3 ) = 7 1 3 x + \sqrt{1 + x^{2}} = \frac{1}{2} (7^{\frac{1}{3}} - 7^{-\frac{1}{3}}) + \frac{1}{2} (7^{\frac{1}{3}} + 7^{-\frac{1}{3}}) = 7^{\frac{1}{3}} ,

and so ( x + 1 + x 2 ) 3 = 7 (x + \sqrt{1 + x^{2}})^{3} = \boxed{7} .

very clever solution!

Mick T - 6 years, 10 months ago

Good solution....

Heder Oliveira Dias - 6 years, 10 months ago

exactly how i solved it !

G C KEERTHI Vasan - 6 years, 10 months ago

Correct approach,Thanks K.K.GARG,India

Krishna Garg - 6 years, 10 months ago

I don't get the second line...

DPK ­ - 6 years, 10 months ago

Log in to reply

To find 1 + x 2 1 + x^{2} , add 1 = 4 4 1 = \frac{4}{4} to the expression in the first line. This effectively changes the sign in front of the 2 2 . Next, it might be easiest to expand the square on the right-hand side of line 2 to see that it does in fact equal 1 + x 2 1 + x^{2} .

Note that with ( a b ) 2 = a 2 2 a b + b 2 (a - b)^{2} = a^{2} - 2ab + b^{2} , when you reverse the sign in front of 2 a b 2ab you will always end up with a 2 + 2 a b + b 2 = ( a + b ) 2 a^{2} + 2ab + b^{2} = (a + b)^{2} .

Brian Charlesworth - 6 years, 10 months ago

thanks!! nice

Abhishek Gupta - 6 years, 10 months ago

integrate cosx/x from npi to (n+1)pi

Neeraj Gupta - 6 years, 9 months ago

not agreed .

amar nath - 6 years, 10 months ago

Let cube root of 7 be "a". Now, solve it.

may use some identity

Gaurav Jain - 6 years, 10 months ago

insnt it look like biquadratic formula

Gaurav Jain - 6 years, 10 months ago
Joseph Eze
Jul 15, 2015

let 7^(1/3) be y. x²=(a^4 -2a²+1)/4a² 1+x² = (a^4 +2a²+1)/4a²=((a²+1)/2a)² (1+x²)^½=(a²+1)/2a x+√(1+x²) = a but a = 7^⅓ so (7^⅓)³ = 7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...