A calculus problem by Naren Bhandari

Calculus Level 5

For n N n\in\mathbb N^{*} , n 2 n\geq 2 , P n = k = 1 n 1 sin ( k π n ) P_n=\displaystyle \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) , find lim n n P n 2 π 6 π 2 cos 3 x sin n x d x \lim_{n\to \infty} \frac{nP_n}2\int^{\frac{\pi}{2}}_{\frac{\pi}{6}} \frac{\cos 3x}{\sin^n x}\,dx

This problem, taken from Romanian Mathematical Magazine , was proposed by teacher Florică Anastase, Romania .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Mar 23, 2020

Here i wish to share my solution.

We have that 2 i sin x = e i x e i x 2i \sin x= e^{-ix}-e^{-ix} with i = 1 i=\sqrt{-1} which follow that P n = 1 ( 2 i ) n 1 ( k = 1 n 1 e i k i π n ) ( k = 1 n 1 ( 1 e k i π n ) ) = L n ( 2 i ) n 1 exp ( k = 1 n 1 i k π n ) = L n 2 n 1 P_n = \frac{1}{(2i)^{n-1}}\left(\prod_{k=1}^{n-1} e^{\frac{iki\pi}{n}}\right)\left(\prod_{k=1}^{n-1} (1-e^{\frac{ki\pi}{n}})\right)=\frac{L_{n}}{(2i)^{n-1} }\exp\left(\sum_{k=1}^{n-1} \frac{ik\pi}{n}\right)=\frac{L_n}{2^{n-1}} where L n L_n is the latter product to be evaluated by noticing the polynomial F ( X ) = k = 1 n ( X e 2 k i π n ) F(X)=\displaystyle \prod_{k=1}^{n}\left(X-e^{-\frac{2ki\pi}{n}}\right) whose zeros are non-trivial solution nth roots of unity ie f ( X ) = k = 1 n 1 X k f(X)=\displaystyle\sum_{k=1}^{n-1} X^k and hence desired F ( 1 ) = k = 1 n 1 1 k = n F(1)= \displaystyle\sum_{k=1}^{n-1} 1^k=n and this deduce that P n = n 2 n 1 P_n=\displaystyle \frac{n}{2^{n-1}} and thus lim n n P n 2 a b cos 3 x sin n x d x = lim n n 2 2 n a b 4 cos 3 x 3 cos x sin n x d x \lim_{n\to\infty}\frac{nP_n}{2}\int_{a}^b\frac{\cos 3x}{\sin^{n}x} dx=\lim_{n\to\infty}\frac{n^2}{2^n}\int_a^b\frac{4\cos^3x -3\cos x}{\sin^n x} dx the latter expression can be simplified to cos x ( 1 4 sin 2 x ) sin n x \displaystyle \frac{\cos x(1-4\sin^2 x)}{\sin ^n x} . We make u- substitution of sin x = u cos d x = d u \sin x = u\Rightarrow \cos dx = du giving us lim n n 2 2 n a 1 b 1 1 u 2 u n d u = lim n n 2 2 n 2 n 3 n + 1 n 2 4 n + 3 = 1 \lim_{n\to\infty}\frac{n^2}{2^n} \int_{a_1}^{b_1} \frac{1-u^2}{u^n} du=-\lim_{n\to\infty}\frac{n^2}{2^n}\frac{2^n-3n+1}{n^2-4n+3}=-1 where a , b a,b are the lower and upper limit of the integratio so does a 1 , b 1 a_1,b_1 after substitution.

Your questions are always excellent, I always wanted to do it myself. And this is the first question I did correctly.

Nikola Alfredi - 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...