Nice question by combining logarithm and trigonometry

Algebra Level 3

If log 24 sin x ( 24 cos x ) = 3 2 \log_{24\sin x}(24\cos x)=\dfrac{3}{2} , find the value of cot 2 x \cot^2x for x ( 0 , π 2 ) x\in \left(0,\dfrac{\pi}{2}\right) .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 24 sin x ( 24 cos x ) = 3 2 ( 24 sin x ) 3 2 = 24 cos x Squaring both sides. 2 4 3 sin 3 x = 2 4 2 cos 2 x 24 sin 3 x = cos 2 x = 1 sin 2 x 24 sin 3 x + sin 2 x 1 = 0 sin x = 1 3 \begin{aligned} \log_{24\sin x}(24\cos x) & = \frac 32 \\ (24\sin x)^\frac 32 & = 24 \cos x & \small \color{#3D99F6} \text{Squaring both sides.} \\ 24^3 \sin^3 x & = 24^2 \cos^2 x \\ 24 \sin^3 x & = \cos^2 x = 1 - \sin^2 x \\ 24 \sin^3 x + \sin^2 x - 1 & = 0 \\ \implies \sin x & = \frac 13 \end{aligned}

Therefore, cot 2 x = cos 2 x sin 2 x = 1 sin 2 x sin 2 x = 1 sin 2 x 1 = 1 ( 1 3 ) 2 1 = 8 \cot^2 x = \dfrac {\cos^2 x}{\sin^2 x} = \dfrac {1-\sin^2 x}{\sin^2 x} = \dfrac 1{\sin^2 x} - 1 = \dfrac 1{\left(\frac 13\right)^2}-1 = \boxed{8} .

how did u proceed to 2nd step? \

rakshith lokesh - 3 years, 3 months ago

Log in to reply

log x y = a y = x a \log_xy = a \Rightarrow y=x^a

Jitendra Kumar - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...