Nice usage

Calculus Level 2

If a and b are positive and a + b = 1 a + b = 1 , find the largest value of

4 a + 1 + 4 b + 1 \sqrt{4a + 1} + \sqrt{4b + 1}


The answer is 3.464.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

By RMS - AM inequality,

4 a + 1 2 + 4 b + 1 2 2 4 a + 1 + 4 b + 1 2 \sqrt{\dfrac{\sqrt{4a+1}^2 + \sqrt{4b+1}^2}{2}} \geq \dfrac{\sqrt{4a+1} + \sqrt{4b+1}}{2}

4 a + 1 + 4 b + 1 2 4 a + 1 + 4 b + 1 2 \sqrt{\dfrac{4a + 1 + 4b + 1}{2}} \geq \dfrac{\sqrt{4a+1} + \sqrt{4b+1}}{2}

2 6 2 4 a + 1 + 4 b + 1 2 \sqrt{\dfrac{6}{2}} \geq \sqrt{4a+1} + \sqrt{4b+1}

2 3 4 a + 1 + 4 b + 1 2\sqrt{3} \geq \sqrt{4a+1} + \sqrt{4b+1}

Equality occurs when a = b = 1 2 a = b = \frac{1}{2} .

Very nice,

one can too apply the short and sweet titu's leema

( 4 a + 1 ) 2 + ( 4 b + 1 ) 2 ( 4 a + 1 + 4 b + 1 ) 2 2 (\sqrt{4a + 1})^2 + (\sqrt{4b + 1})^2 \geq \dfrac{(\sqrt{4a + 1} + \sqrt{4b + 1})^2}{2}

maximum = 2 3 2\sqrt{3}

U Z - 6 years, 5 months ago

how do you format the inequality signs?

Curtis Clement - 6 years, 5 months ago

Log in to reply

\geq for \geq and \leq for \leq .

Hovering over the Latex also shows the syntax.

Siddhartha Srivastava - 6 years, 5 months ago

It is symmetric with respect to the two variables in both expressions. So, a=b =1/2.
So, exp. = 4 1 / 2 + 1 + 4 1 / 2 + 1 = 2 3 = 3.4641 \sqrt{4*1/2 +1} + \sqrt{4*1/2 +1} = 2*\sqrt3= \boxed{ 3.4641 }
OR e x p . = 4 a + 1 + 4 4 a + 1 = 4 a + 1 + 5 4 a D i f f e r a n t i a t i n g w . r . t . a , a n d e q u a t i n g t o 0. W e g e t 2 4 a + 1 = 2 5 4 a 4 a + 1 = 5 4 a . . . . . g i v e s a = 1 / 2 b = 1 / 2 , a n d e x p . = 3.4641 \\~~ \\ exp.= \sqrt{4*a +1} + \sqrt{4 -4*a +1} =\sqrt{4*a +1} + \sqrt{5 -4*a} \\ Differantiating~~ w.r.t~~.a,~ and~ equating~ to~ 0.\\We~get ~\dfrac{2}{\sqrt{4a+1} } = \dfrac{2}{\sqrt{5 -4a} } ~\\\implies~ 4a+1=5 -4a.....gives~~a=1/2 \therefore~b=1/2,~~~\\and~ exp.= \boxed { 3.4641 }

No need of complex equations.This needs only maxima and minima here's the solution:

Curtis Clement
Dec 20, 2014

using the Cauchy-Schwarz inequality: let Y1 = Y2 = 1, X1 = 4 a + 1 \sqrt{4a+1} and X2 = 4 b + 1 \sqrt{4b+1} . Substituting this gives us: ( 4 a + 1 \sqrt{4a+1} + 4 b + 1 \sqrt{4b+1} )^2 has a maximum value of 12 by applying a+b=1. square - rooting gives a maximum value of 12 \sqrt{12} = 2 3 \sqrt{3} ~ 3.464. Equality holds if, and only if, (X1)(Y2) = (X2)(Y1) or in other words a=b=0.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...