Nice x in geometry

Geometry Level 3

Find x x in degree.


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

What is the motivation for inscribing the figure in a circle?

Elijah L - 1 year ago

Log in to reply

@Elijah L angle DAC is 40 deg .. which we can figure out from the given angles in triangle ACD.. also ACD is an Iso triangle with AC=AD, again angle DBC is 20 deg .. which is half of angle DAC.. both of these conditions supports the property of a circle (subtending angles arc and centre.. ) again reflex angle DCB = 240... and angle DAB = 120.. as we can cross check... so all these points 'D' 'C' & 'B' lie on the circumference of a circle...

nibedan mukherjee - 1 year ago

C D = 2 A D sin 20 ° |\overline {CD}|=2|\overline {AD}|\sin 20\degree .

In B C D , C D sin 20 ° = B D sin 120 ° \triangle {BCD}, \dfrac{|\overline {CD}|}{\sin 20\degree}=\dfrac {|\overline {BD}|}{\sin 120\degree}

B D = 3 A D \implies |\overline {BD}|=\sqrt 3|\overline {AD}| .

In A B D , A D sin ( 110 ° x ) = B D sin ( 40 ° + x ) \triangle {ABD}, \dfrac {|\overline {AD}|}{\sin (110\degree-x)}=\dfrac {|\overline {BD}|}{\sin (40\degree+x)}

tan x = 3 cos 20 ° sin 40 ° cos 40 ° 3 sin 20 ° \implies \tan x=\dfrac {\sqrt 3\cos 20\degree-\sin 40\degree}{\cos 40\degree-\sqrt 3\sin 20\degree}

= sin 20 ° + 3 cos 20 ° cos 20 ° 3 sin 20 ° =\dfrac {\sin 20\degree+\sqrt 3\cos 20\degree}{\cos 20\degree-\sqrt 3\sin 20\degree}

= cos ( 20 ° tan 1 1 3 ) cos ( 20 ° + tan 1 3 ) =\dfrac{\cos (20\degree-\tan^{-1} \frac{1}{\sqrt 3})}{\cos (20\degree+\tan^{-1} \sqrt 3)}

= cos 10 ° cos 80 ° = tan 80 ° =\dfrac {\cos 10\degree}{\cos 80\degree}=\tan 80\degree

x = 80 ° \implies x=\boxed {80\degree} .

Nice solution from @Nibedan Mukherjee . To show that the solution works, we have to show that A B = A C = A D AB=AC=AD . Then A A is the center of a circle of radius A B AB and A B D \triangle ABD is isosceles, and x = 18 0 2 ( 3 0 ) 4 0 = 80 x = 180^\circ - 2(30^\circ) - 40^\circ = \boxed{80}^\circ . Let A B = A C = A D = 1 AB=AC=AD = 1 . We need to show A B = 1 AB=1 .

Since A C D \triangle ACD is isosceles, A C = A D = 1 AC=AD=1 . Then C D = 2 sin 2 0 CD=2\sin 20^\circ . Let the diagonals of A B C D ABCD intersect at E E . We note that C D E \triangle CDE is isosceles and C E = 4 sin 2 2 0 CE=4\sin^2 20^\circ . Then A E = A C C E = 1 4 sin 2 2 0 = 2 cos 4 0 c i r c 1 AE=AC-CE = 1-4\sin^2 20^\circ=2\cos 40^ circ -1 .

By sine rule , B E sin 5 0 = C E sin 2 0 B E = 4 sin 2 0 sin 5 0 = 4 sin 2 0 cos 4 0 \dfrac {BE}{\sin 50^\circ} = \dfrac {CE}{\sin 20^\circ} \implies BE = 4\sin 20^\circ \sin 50^\circ = 4\sin 20^\circ \cos 40^\circ .

By cosine rule ,

A B 2 = A E 2 + B E 2 2 A E B E cos A E B = ( 2 cos 4 0 1 ) 2 + ( 4 sin 2 0 cos 4 0 ) 2 8 ( 2 cos 4 0 1 ) sin 2 0 cos 4 0 cos 7 0 As cos 7 0 = sin 2 0 = 4 cos 2 4 0 4 cos 4 0 + 1 + 16 sin 2 2 0 cos 2 4 0 16 sin 2 2 0 cos 2 4 0 + 8 sin 2 2 0 cos 4 0 = 4 cos 2 4 0 + 1 4 cos 4 0 ( 1 2 sin 2 2 0 ) = 4 cos 2 4 0 + 1 4 cos 2 4 0 = 1 A B = 1 \begin{aligned} AB^2 & = AE^2 + BE^2 - 2AE\cdot BE \cos \angle AEB \\ & = (2\cos 40^\circ-1)^2 + (4\sin 20^\circ \cos 40^\circ)^2 - 8(2\cos 40^\circ-1)\sin 20^\circ \cos 40^\circ \blue{\cos 70^\circ} \quad \quad \small \blue{\text{As }\cos 70^\circ = \sin 20^\circ} \\ & = 4\cos^2 40^\circ - 4\cos 40^\circ + 1 + \cancel{16\sin^2 20^\circ \cos^2 40^\circ} - \cancel{16\sin^2 20^\circ \cos^2 40^\circ} + 8 \sin^2 20^\circ \cos 40^\circ \\ & = 4\cos^2 40^\circ + 1 - 4\cos 40^\circ (1-2\sin^2 20^\circ) \\ & = \cancel{4\cos^2 40^\circ} + 1 - \cancel{4\cos^2 40^\circ} \\ & = 1 \\ \implies AB & = 1 \end{aligned}

You need to remove the part "Let A B = 1 AB=1 " in your initial statement.

Vilakshan Gupta - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...