Nilakantha Series

Calculus Level 3

n = 0 ( 1 ) n ( 2 n + 3 ) 3 ( 2 n + 3 ) = π a b c \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ { \left( 2n+3 \right) }^{ 3 }-\left( 2n+3 \right) } } =\frac { { \pi }^{ a }-b }{ c }

The equation above holds true for real numbers a a , b b , and c c . Find the value of a + b + c a+b+c .

Note: Nilakantha Somayaji was a kerala mathematician during the mid 15th and 16th century.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 16, 2020

S = n = 0 ( 1 ) n ( 2 n + 3 ) 3 ( 2 n + 3 ) = n = 0 ( 1 ) n ( 2 n + 3 ) ( 4 n 2 + 12 n + 8 ) = n = 0 ( 1 ) n ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 4 ) By partial fraction decomposition = n = 0 ( 1 ) n 2 ( 1 2 n + 2 2 2 n + 3 + 1 2 n + 4 ) = 1 2 ( 1 2 2 3 + 1 4 1 4 + 2 5 1 6 + 1 6 2 7 + 1 8 ) = 1 4 1 + ( 1 1 3 + 1 5 1 7 + ) = 1 4 1 + tan 1 1 = π 3 4 \begin{aligned} S & = \sum_{n=0}^\infty \frac {(-1)^n}{(2n+3)^3 - (2n+3)} \\ & = \sum_{n=0}^\infty \frac {(-1)^n}{(2n+3)\left(4n^2+12n+8\right)} \\ & = \sum_{n=0}^\infty \frac {(-1)^n}{(2n+3)(2n+2)(2n+4)} & \small \blue{\text{By partial fraction decomposition}} \\ & = \sum_{n=0}^\infty \frac {(-1)^n}2 \left(\frac 1{2n+2} - \frac 2{2n+3} + \frac 1{2n+4} \right) \\ & = \frac 12 \left(\frac 12 - \frac 23 + \frac 14 - \frac 14 + \frac 25 - \frac 16 + \frac 16 - \frac 27 + \frac 18 - \cdots \right) \\ & = \frac 14 - 1 + \left(1 - \frac 13 + \frac 15 - \frac 17 + \cdots \right) \\ & = \frac 14 - 1 + \tan^{-1} 1 \\ & = \frac {\pi - 3}4 \end{aligned}

Therefore a + b + c = 1 + 3 + 4 = 8 a+b+c = 1+3+4 = \boxed 8 .

This was easy.... I figured it out.

Nikola Alfredi - 1 year, 3 months ago
Syed Shahabudeen
Feb 16, 2020

The series can be written in the form n = 0 ( 1 ) n ( 2 n + 3 ) ( ( 2 n + 3 ) 2 1 ) = n = 0 ( 1 ) n ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 4 ) \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ \left( 2n+3 \right) \left( { \left( 2n+3 \right) }^{ 2 }-1 \right) } } =\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ \left( 2n+3 \right) \left( 2n+2 \right) \left( 2n+4 \right) } } by partial fraction decomposition we can further simplify it as 1 4 n = 0 ( ( 1 ) n ( n + 1 ) + ( 1 ) n ( n + 2 ) + 4 ( 1 ) n + 1 2 n + 3 ) \frac { 1 }{ 4 } \sum _{ n=0 }^{ \infty }{ \left( \frac {{ \left( -1 \right) }^{ n } }{ (n+1) } +\frac { { \left( -1 \right) }^{ n } }{( n+2) } +\frac { { 4\left( -1 \right) }^{ n+1 } }{ 2n+3 } \right) } where n = 0 ( 1 ) n n + 1 = ln ( 2 ) ; n = 0 ( 1 ) n n + 2 = 1 ln 2 ; n = 0 4 ( 1 ) n + 1 ( 2 n + 3 ) = π 4 \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ n+1 } } =\ln { \left( 2 \right) } ;\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n } }{ n+2 } =1-\ln { 2;\sum _{ n=0 }^{ \infty }{ \frac { 4{ \left( -1 \right) }^{ n+1 } }{ \left( 2n+3 \right) } =\pi } } } -4 on substituting we get 1 4 ( ln 2 + 1 ln 2 + π 4 ) = π 3 4 \frac { 1 }{ 4 } \left( \ln { 2+1-\ln { 2+\pi -4 } } \right) =\frac { \pi -3 }{ 4 } therefore we get a = 1 a=1 , b = 3 b=3 , c = 4 c=4 so a + b + c = 8 \boxed{a+b+c=8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...