m = 0 ∑ ∞ k = 0 ∑ ∞ ( 2 m + 3 ) 2 k + 3 ( ( 2 m + 3 ) 2 − 1 ) ( − 1 ) m + 1 = b π a − d π c − f e
The equation above holds true for positive integers a , b , c , d , e , and f with e and f being coprime integers. Find the value of a + b + c + d + e + f .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = m = 0 ∑ ∞ k = 0 ∑ ∞ ( 2 m + 3 ) 2 k + 3 ( ( 2 m + 3 ) 2 − 1 ) ( − 1 ) m + 1 = m = 0 ∑ ∞ ( 2 m + 3 ) 3 ( ( 2 m + 3 ) 2 − 1 ) ( − 1 ) m + 1 k = 0 ∑ ∞ ( ( 2 m + 3 ) 2 1 ) k = m = 0 ∑ ∞ ( 2 m + 3 ) 3 ( ( 2 m + 3 ) 2 − 1 ) ( − 1 ) m + 1 × ( 2 m + 3 ) 2 − 1 ( 2 m + 3 ) 2 = m = 0 ∑ ∞ ( 2 m + 3 ) ( 4 m 2 + 1 2 m + 8 ) 2 ( − 1 ) m + 1 = m = 0 ∑ ∞ ( 2 m + 3 ) ( 2 m + 2 ) 2 ( 2 m + 4 ) 2 ( − 1 ) m + 1 = m = 0 ∑ ∞ 4 ( − 1 ) m + 1 ( ( 2 m + 2 ) 2 1 − 2 m + 2 2 + 2 m + 3 4 − ( 2 m + 4 ) 2 1 − 2 m + 4 2 ) = m = 0 ∑ ∞ 2 ( − 1 ) m ( 2 m + 2 1 − 2 m + 3 2 + 2 m + 4 1 ) − m = 0 ∑ ∞ 1 6 ( − 1 ) m ( ( m + 1 ) 2 1 − ( m + 2 ) 2 1 ) = 2 1 ( 2 1 − 3 2 + 4 1 − 4 1 + 5 2 − 6 1 + 6 1 − 7 2 + ⋯ ) − 1 6 1 ( 1 2 1 − 2 2 1 − 2 2 1 + 3 2 1 + 3 2 1 − 4 2 1 − ⋯ ) = 4 1 − 1 + n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n + 1 6 1 − 8 1 n = 1 ∑ n 2 ( − 1 ) n + 1 = − 1 6 1 1 + tan − 1 1 − 8 1 ( ζ ( 2 ) − 2 1 ζ ( 2 ) ) = 4 π − 9 6 π 2 − 1 6 1 1 By partial fraction decomposition Riemann zeta function ζ ( s ) = k = 1 ∑ ∞ k s 1 and ζ ( 2 ) = 6 π 2
Therefore a + b + c + d + e + f = 1 + 4 + 2 + 9 6 + 1 1 + 1 6 = 1 3 0 .
Reference: Riemann zeta function
Problem Loading...
Note Loading...
Set Loading...
The series can be simplified and can be written as m = 1 ∑ ∞ k = 1 ∑ ∞ ( 2 m + 1 ) 2 k + 1 ( ( 2 m + 1 ) 2 − 1 ) ( − 1 ) m = 4 1 m = 1 ∑ ∞ k = 1 ∑ ∞ ( 2 m + 1 ) 2 k + 1 ( m + 1 ) ( m ) ( − 1 ) m which can be further simplified as 4 1 m = 1 ∑ ∞ ( 2 m + 1 ) ( m + 1 ) ( m ) ( − 1 ) m k = 1 ∑ ∞ ( 2 m + 1 ) 2 k 1 since second series is a geometric series so we get k = 1 ∑ ∞ ( 2 m + 1 ) 2 k 1 = ( 2 m + 1 ) 2 − 1 1 = 4 ( m + 1 ) ( m ) 1 on substitution we get 1 6 1 m = 1 ∑ ∞ ( 2 m + 1 ) ( m + 1 ) 2 ( m ) 2 ( − 1 ) m by partial fraction decomposition and by evaluating each series we get 1 6 1 m = 1 ∑ ∞ ( m 4 ( − 1 ) m + 1 + m 2 ( − 1 ) m + m + 1 4 ( − 1 ) m + 1 + ( m + 1 ) 2 ( − 1 ) m + 1 + ( 2 m + 1 ) 1 6 ( − 1 ) m ) = 1 6 1 ( ( 4 ln 2 ) − 1 2 π 2 + 4 − 4 ln 2 + 1 − 1 2 π 2 + 4 π − 1 6 ) = 4 π − 9 6 π 2 − 1 6 1 1 therefore a + b + c + d + e + f = 1 + 4 + 2 + 9 6 + 1 1 + 1 6 = 1 3 0