João calculated the product of the non zero digits of each integer from
to
and then he summed these
products. The number he obtained can be written as
. Find
.
This problem is from the NMO.This problem is part of this set .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Brace yourself, long solution coming up.
F o r d i g i t s f r o m 1 t o 9 , t h e s u m i s : − 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 N e x t , f o r 1 0 t o 1 9 : − 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 T h e n f o r 2 0 t o 2 9 : − 2 ( 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) A n d s o o n t i l l 9 9 . T h u s , l e t ′ s t a k e S = 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 T h u s , f o r d i g i t s t i l l 9 9 w e h a v e . S + S + 2 S + 3 S + 4 S + 5 S + 6 S + 7 S + 8 S + 9 S = 4 6 S N o w f o r 1 0 0 t o 1 0 0 0 : − 1 × 1 × S + 1 × 2 × S . . . + 1 × 9 × S + 2 × 1 × S + 2 × 2 × S . . . + 9 × 9 × S A d d i n g a l l , w e g e t : − ( 4 6 × 4 6 × S ) − 1 + 1 ( B e c a u s e t h e r e ′ s o n e 1 l e s s i n f i r s t i n f i r s t s t e p ) = 4 6 3 T h u s w e s e e f o r 1 0 3 , t h e s o l u t i o n i s 4 6 3 a n d f o r 1 0 2 , t h e s o l u t i o n i s 4 6 2 T h u s f o r a n y 1 0 k , t h e s o l u t i o n i s 4 6 k . H e n c e f o r 1 0 2 0 0 9 , t h e s o l u t i o n i s 4 6 2 0 0 9 . T h u s 4 6 + 2 0 0 9 = 2 0 5 5 .