NMO Problem 3

João calculated the product of the non zero digits of each integer from 1 1 to 1 0 2009 10^{2009} and then he summed these 1 0 2009 10^{2009} products. The number he obtained can be written as A B A^B . Find A + B A+B .

This problem is from the NMO.This problem is part of this set .


The answer is 2055.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Verma
Apr 10, 2015

Brace yourself, long solution coming up.

F o r d i g i t s f r o m 1 t o 9 , t h e s u m i s : 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 N e x t , f o r 10 t o 19 : 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 T h e n f o r 20 t o 29 : 2 ( 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) A n d s o o n t i l l 99. T h u s , l e t s t a k e S = 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 T h u s , f o r d i g i t s t i l l 99 w e h a v e . S + S + 2 S + 3 S + 4 S + 5 S + 6 S + 7 S + 8 S + 9 S = 46 S N o w f o r 100 t o 1000 : 1 × 1 × S + 1 × 2 × S . . . + 1 × 9 × S + 2 × 1 × S + 2 × 2 × S . . . + 9 × 9 × S A d d i n g a l l , w e g e t : ( 46 × 46 × S ) 1 + 1 ( B e c a u s e t h e r e s o n e 1 l e s s i n f i r s t i n f i r s t s t e p ) = 46 3 T h u s w e s e e f o r 10 3 , t h e s o l u t i o n i s 46 3 a n d f o r 10 2 , t h e s o l u t i o n i s 46 2 T h u s f o r a n y 10 k , t h e s o l u t i o n i s 46 k . H e n c e f o r 10 2009 , t h e s o l u t i o n i s 46 2009 . T h u s 46 + 2009 = 2055 . For\quad digits\quad from\quad 1\quad to\quad 9,\quad the\quad sum\quad is:-\\ \\ 1\quad +\quad 2\quad +\quad 3\quad +\quad 4\quad +\quad 5\quad +\quad 6\quad +\quad 7\quad +\quad 8\quad +\quad 9\quad \\ \\ Next,\quad for\quad 10\quad to\quad 19:-\\ \\ 1\quad +\quad 1\quad +\quad 2\quad +\quad 3\quad +\quad 4\quad +\quad 5\quad +\quad 6\quad +\quad \\ 7\quad +\quad 8\quad +\quad 9\quad \\ \\ Then\quad for\quad 20\quad to\quad 29:-\\ \\ 2(\quad 1\quad +\quad 1\quad +\quad 2\quad +\quad 3\quad +\quad 4\quad +\quad 5\quad +\quad 6\quad \\ +\quad 7\quad +\quad 8\quad +\quad 9)\\ \\ And\quad so\quad on\quad till\quad 99.\\ \\ Thus,\quad let's\quad take\quad S\quad =\quad 1\quad +\quad 1\quad +\quad 2\quad +\quad 3\quad +\quad 4\quad +\quad 5\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad +\quad 6\quad +\quad 8\quad +\quad 9\\ \\ Thus,\quad for\quad digits\quad till\quad 99\quad we\quad have.\\ \\ S\quad +\quad S\quad +\quad 2S\quad +\quad 3S\quad +\quad 4S\quad +\quad 5S\quad +\quad 6S\quad +\quad 7S\\ +8S\quad +\quad 9S\quad =\quad 46S\\ \\ Now\quad for\quad 100\quad to\quad 1000:-\\ \\ \quad 1\quad \times \quad 1\quad \times \quad S\\ +1\quad \times \quad 2\quad \times \quad S\\ .\\ .\\ .\\ +1\quad \times \quad 9\quad \times \quad S\\ +2\quad \times \quad 1\quad \times \quad S\\ +2\quad \times \quad 2\quad \times \quad S\\ .\\ .\\ .\\ +9\quad \times \quad 9\quad \times \quad S\\ \\ Adding\quad all,\quad we\quad get:-\\ (46\quad \times \quad 46\quad \times \quad S)\quad -\quad 1\quad +1\quad (Because\quad there's\quad one\quad 1\quad less\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad in\quad first\quad in\quad first\quad step)\\ =\quad { 46 }^{ 3 }\quad \\ Thus\quad we\quad see\quad for\quad { 10 }^{ 3 },\quad the\quad solution\quad is\quad { 46 }^{ 3 }\\ and\quad for\quad { 10 }^{ 2 },\quad the\quad solution\quad is\quad { 46 }^{ 2 }\\ \\ Thus\quad for\quad any\quad { 10 }^{ k },\quad the\quad solution\quad is\quad \\ { 46 }^{ k }.\\ Hence\quad for\quad { 10 }^{ 2009 },\quad the\quad solution\quad is\\ { 46 }^{ 2009 }.\\ Thus\quad 46\quad +\quad 2009\quad =\quad \boxed { 2055 } .

Well, it's extremely easy! Overrated! Just what we have to do is see that a n = ( S 9 + 1 ) a n 1 {a}_{n} = ({S}_{9} +1){a}_{n-1} and then we know that a 1 = S 9 + 1 {a}_{1} = {S}_{9}+1

Kartik Sharma - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...