NMTC 2017 sub junior

Algebra Level 3

If: x 2 ( y + z ) = a 2 , y 2 ( z + x ) = b 2 z 2 ( x + y ) = c 2 , x y z = a b c x^2(y+z)=a^2, y^2(z+x)=b^2\, z^2(x+y)=c^2, xyz=abc F i n d a 2 + b 2 + c 2 + 2 a b c Find\space a^2+b^2+c^2+2abc


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

To Find S = a 2 + b 2 + c 2 + 2 a b c S = a^2 + b^2 + c^2 + 2abc x 2 ( y + z ) = a 2 ( 1 ) x^2(y+z)=a^2 -----(1) y 2 ( z + x ) = b 2 ( 2 ) y^2(z+x)=b^2 -----(2) z 2 ( x + y ) = c 2 ( 3 ) z^2(x+y)=c^2 -----(3) x y z = a b c ( 4 ) xyz=abc -----(4) Multiplying (1),(2)and (3)

x 2 y 2 z 2 ( x + y ) ( y + z ) ( z + x ) = a 2 b 2 c 2 x^2y^2z^2(x + y)(y + z)(z + x) = a^2b^2c^2 ( x + y ) ( y + z ) ( z + x ) = 1 ( 5 ) (x + y)(y + z)(z + x) = 1 -------(5) S = a 2 + b 2 + c 2 + 2 a b c = x 2 ( y + z ) + y 2 ( z + x ) + z 2 ( x + y ) + 2 x y z ( 6 ) S = a^2 + b^2 + c^2 + 2abc = x^2(y + z) + y^2(z + x) + z^2(x + y) + 2xyz -----(6) Put y + z = 0 y+z=0 S = 0 + z 2 ( z + x ) + z 2 ( x z ) + 2 x ( z ) ( z ) S= 0 + z^2(z + x) + z^2(x - z) + 2x(-z)(z) S = z 3 + z 2 x + z 2 x z 3 2 x z 2 S= z^3 + z^2x + z^2x - z^3 - 2xz^2 S = 0 S= 0 ( y + z ) \therefore (y + z) is a factor

similarily ( x + y ) (x + y) & ( x + z ) (x + z) are also factors

x 2 ( y + z ) + y 2 ( z + x ) + z 2 ( x + y ) + 2 x y z = k ( x + y ) ( y + z ) ( z + x ) ( 7 ) x^2(y + z) + y^2(z + x) + z^2(x + y) + 2xyz = k(x + y)(y + z)(z + x) -----(7)

put x = 0 , y = 1 , z = 1 x = 0, y = 1, z = 1 we get k = 1 k = 1 From above Equation (7)

Now From (6) and (7) S = k ( x + y ) ( y + z ) ( z + x ) S = k(x + y)(y + z)(z + x) S = 1 \implies \quad \boxed{S = 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...