NMTC final test 2014

Algebra Level 4

If x , y , z x, y, z are each greater than 1, find the least constant K K such that

x 4 ( y 1 ) 2 + y 4 ( z 1 ) 2 + z 4 ( x 1 ) 2 K \huge\ \frac { { x }^{ 4 } }{ { (y-1) }^{ 2 } } +\frac { { y }^{ 4 } }{ { (z-1) }^{ 2 } } +\frac { { z }^{ 4 } }{ { (x-1) }^{ 2 } } \ge \quad K .


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
Sep 30, 2015

Setting x = a + 1 x=a+1 , y = b + 1 y=b+1 , z = c + 1 z=c+1 forces the L.H.S. of the given inequality equivalent to

( a + 1 ) 4 b 2 + ( b + 1 ) 4 c 2 + ( c + 1 ) 4 a 2 \large \frac { { (a+1) }^{ 4 } }{ { b }^{ 2 } } +\frac { { (b+1) }^{ 4 } }{ { c }^{ 2 } } +\frac { { (c+1) }^{ 4 } }{ { a }^{ 2 } }

and this is (by AM-GM )

3 { ( a + 1 ) 4 ( b + 1 ) 4 ( c + 1 ) 4 a 2 b 2 c 2 } 3 \large\ \ge 3\sqrt [ 3 ]{ \left\{ \frac { { (a+1) }^{ 4 }{ (b+1) }^{ 4 }{ (c+1) }^{ 4 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 } } \right\} }

Since for any positive integer x x , x + 1 2 x x+1\ge 2\sqrt { x } , we have

3 { ( a + 1 ) 4 ( b + 1 ) 4 ( c + 1 ) 4 a 2 b 2 c 2 } 3 3 ( 2 a ) 4 2 b 4 2 c 4 a 2 b 2 c 2 3 = 48 \large\ 3\sqrt [ 3 ]{ \left\{ \frac { { (a+1) }^{ 4 }{ (b+1) }^{ 4 }{ (c+1) }^{ 4 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 } } \right\} } \ge \quad 3\sqrt [ 3 ]{ \frac { { (2\sqrt { a } ) }^{ 4 }2{ \sqrt { b } }^{ 4 }2{ \sqrt { c } }^{ 4 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 } } } =48

Where K = 48. K = 48.

Hence answer: 48 \boxed{48}

I think you missed the cube root

Department 8 - 5 years, 8 months ago

Log in to reply

Thanks Lakshya. I will edit it.

Priyanshu Mishra - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...