NMTC Practice problem 3

Geometry Level 3

In triangle ABC , D is the mid point of BC. Angle ADB=45 , Angle ACD=30 . Determine angle BAD.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I n Δ C A D , i n t e r n a l C A D = 45 30 = 15. I n Δ D A B A B D = 180 45 D A B = 135 D A B . A p p l y i n g S i n L a w t o Δ s A B D A C D , S i n ( 135 B A D ) S i n B A D = B D A D = D C A D = S i n 30 S i n 15 E x p a n d i n g S i n a n d s i m p l i f y i n g , C o t B A D = 2 2 C o s 15 1. B A D = T a n 1 ( 1 2 2 C o s 15 1 ) = 3 0 o . In~\Delta~ CAD,~~ internal ~\angle~CAD=45-30=15.\\ In~\Delta DAB ~\angle~ABD=180-45-DAB=135-DAB.\\ Applying~ Sin ~Law~to~\Delta s ~~ABD~ACD,\\ \dfrac{Sin(135-BAD)}{SinBAD}=\dfrac{BD}{AD}=\dfrac{DC}{AD}=\dfrac{Sin30}{Sin15}\\ Expanding~Sin ~and~simplifying,~~~CotBAD=2*\sqrt2*Cos15-1.\\ \angle~BAD=Tan^{-1}(\dfrac 1 {2*\sqrt2*Cos15-1})=30^o.~~\\

Ahmad Saad
Dec 27, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...