Fermat helps: 473 156 + 981 13 52 = 105823817 \sqrt [ 52 ]{ { 473 }^{ 156 }+{ 981 }^{ 13 } } =105823817

True or False?

473 156 + 981 13 52 = 105823817 \large\sqrt [ 52 ]{ { 473 }^{ 156 }+{ 981 }^{ 13 } } =105823817

No calculator needed. Use Fermat's Last Theorem .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Oct 1, 2017

Consider ( 47 3 12 ) 13 + 98 1 13 ( 10582381 7 4 ) 13 \large (473^{12})^{13} + 981^{13} \neq (105823817^4)^{13}

473 156 + 981 13 52 105823817 \large \Rightarrow \sqrt [ 52 ]{ { 473 }^{ 156 }+{ 981 }^{ 13 } } \neq 105823817

Ron Lauterbach
Oct 1, 2017

Fermat's last theorem says, that no x n + y n = z n x^{n} + y^{n} = z^{n} has no positive integral (integer) solutions for n > 2 n > 2 .

Rearranging:

47 3 156 + 98 1 13 = 10582381 7 52 473^{156}+981^{13}=105823817^{52}

Rewriting:

( 47 3 12 ) 13 + 98 1 13 = ( 10582381 7 4 ) 13 (473^{12})^{13}+981^{13}=(105823817^{4})^{13}

Due to Fermat's theorem, it must have no solutions ( n = 13 n = 13 ).

Checking with Calculator (don't do this, just trying to show)

47 3 156 + 98 1 13 = 473^{156} + 981^{13} =

1898182455987008946396006363347308090945891508259974310597456828126172089112739214102767043783335566247400837579465612442872991162298052157315387100663665430703590466947887678679235884216295902469587608194039586910361116996504612190227718265817732730585408218274194030911655001269442358944233592451831877370746586205453731339911485478915302078897214317241051804145723391462653591708006051388370018769028511822619781702

10582381 7 52 = 105823817^{52} =

1898182455987008946396006363347308090945891508259974310597456828126172089112739214102767043783335566247400837579465612442872991162298052157315387100663665430703590466947887678679235884216295902469587608194039586910361116996504612190227718265817732730585408218274194030911655001269442358944233592451831877370746586205453731339911485478915302078897214317241051804145723391462653590928719653394306258535732918833303945761

Your calculator could round this and call it equal, even though it is not.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...