No Calculators!

Algebra Level 2

If x = 3 + 2 2 x = \sqrt{3+2 \sqrt{2}} , find the value of x 4 + 1 x 4 \large{x^4 + \dfrac{1}{x^4}}


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anuj Shikarkhane
Dec 12, 2016

x = 3 + 2 2 x=\sqrt{3+2 \sqrt{2}}

x 2 = 3 + 2 2 x^2=3+2 \sqrt{2}

1 x 2 = 1 3 + 2 2 = 3 2 2 \dfrac{1}{x^2} = \dfrac{1}{3+2\sqrt{2}} = 3 - 2\sqrt{2} (Rationalizing the denominator)

x 2 + 1 x 2 = 3 + 2 2 + 3 2 2 = 6 x^2 + \dfrac{1}{x^2} = 3+2 \sqrt{2} + 3-2 \sqrt{2} = 6

( x 2 + 1 x 2 ) 2 = 6 2 \left(x^2+ \dfrac{1}{x^2}\right)^2 = 6^2

x 4 + 2 + 1 x 4 = 36 x^4 + 2 + \dfrac{1}{x^4} = 36

x 4 + 1 x 4 = 34 \large{\boxed{x^4 + \dfrac{1}{x^4} = 34}}

Prokash Shakkhar
Dec 16, 2016

Given that, x = 3 + 2 2 x = \sqrt{3+2\sqrt{2}} .. Squaring both side, x 2 = 3 + 2 2 x^2 = 3+2\sqrt{2} x 4 = 17 + 12 2 \Rightarrow x^4 =17+12\sqrt{2} ..... ( 1 ) (1) Again, 1 x 2 = 3 2 2 \frac{1}{x^2} =3-2\sqrt{2} 1 x 4 = 17 2 2 \Rightarrow \frac{1}{x^4} = 17-2\sqrt{2} ........ ( 2 ) (2) Now, applying ( 1 ) + ( 2 ) (1)+ (2) \Rightarrow x^4 + \frac{1}{x^4}=\boxed{\color\red{34}}

. .
Feb 20, 2021

x = 3 + 2 2 , x 4 + 1 x 4 = ( 3 + 2 2 ) 4 + 1 ( 3 + 2 2 ) 4 = 34 \displaystyle x = \sqrt { 3 + 2\sqrt { 2 } }, x ^ { 4 } + \frac { 1 } { x ^ { 4 } } = ( \sqrt {3 + 2 \sqrt { 2 } } ) ^ { 4 } + \frac { 1 } { ( \sqrt { 3 + 2 \sqrt { 2 } } ) ^ { 4 } } = \boxed { 34 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...