No calculators allowed!

N = ( 5 0 ) ( 505 5 ) ( 5 1 ) ( 404 5 ) + ( 5 2 ) ( 303 5 ) ( 5 3 ) ( 202 5 ) + ( 5 4 ) ( 101 5 ) N = \binom{5}{0}\binom{505}{5} - \binom{5}{1} \binom{404}{5} + \binom{5}{2}\binom{303}{5}-\binom{5}{3}\binom{202}{5}+\binom{5}{4}\binom{101}{5}

How many positive integral divisors does N N have?

15 9 12 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 23, 2018

Let f ( x ) = ( ( 1 + x ) 101 1 ) 5 = ( 5 0 ) ( 1 + x ) 505 ( 5 1 ) ( 1 + x ) 404 + ( 5 2 ) ( 1 + x ) 303 ( 5 3 ) ( 1 + x ) 202 + ( 5 4 ) ( 1 + x ) 101 1 f(x) = \left((1+x)^{101}-1\right)^5 = \binom 50 (1+x)^{505} - \binom 51 (1+x)^{404} + \binom 52 (1+x)^{303} - \binom 53 (1+x)^{202} + \binom 54 (1+x)^{101} - 1 .

Note that N N is the coefficient of x 5 x^5 of f ( x ) f(x) or N = f ( 5 ) ( 0 ) 5 ! N = \dfrac {f^{(5)} (0)}{5!} , where f ( n ) f^{(n)} is the n n th derivative of f ( x ) f(x) .

Since f ( 5 ) ( x ) = 5 ! 10 1 5 N = 10 1 5 f^{(5)} (x) = 5!101^5 \implies N = 101^5 . Noting that 101 is a prime, the number of divisors of N N is 5 + 1 = 6 5+1=\boxed 6 .

Amit Rajaraman
Oct 22, 2018

N N is equal to the coefficient of x 5 x^{5} in

( 5 0 ) ( 1 + x ) 505 ( 5 1 ) ( 1 + x ) 404 + ( 5 2 ) ( 1 + x ) 303 ( 5 3 ) ( 1 + x ) 202 + ( 5 4 ) ( 1 + x ) 101 ( 5 5 ) \binom{5}{0}(1+x)^{505}-\binom{5}{1}(1+x)^{404}+\binom{5}{2}(1+x)^{303}-\binom{5}{3}(1+x)^{202}+\binom{5}{4}(1+x)^{101}-\binom{5}{5}

= ( ( 1 + x ) 101 1 ) 5 = ((1+x)^{101}-1)^{5}

= x 5 ( 101 + ( 101 2 ) x + ( 101 3 ) x 2 + + ( 101 100 ) x 99 + x 100 ) 5 =x^{5}(101+\binom{101}{2}x+\binom{101}{3}x^{2}+\dots+\binom{101}{100}x^{99}+x^{100})^{5}

Clearly, the coefficient of x 5 x^{5} in this simplified expression is given by just 10 1 5 101^{5} . Thus, the number of positive integral divisors of N N is 6 \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...